SOME SEQUENCES OF RATIONAL NUMBERS RELATED TO THE EXPONENTIAL FUNCTION

By F. T. Howard

1. Introduction. For $k>0$, define $A_{k, 0}, A_{k, 1}, A_{k, 2}, \ldots$ by

$$
\begin{equation*}
\frac{x^{k}}{k!}\left(e^{x}-\sum_{s=0}^{k-1} \frac{x^{s}}{s!}\right)^{-1}=\sum_{r=0}^{\infty} A_{k, r} \frac{x^{r}}{r!} \tag{1.1}
\end{equation*}
$$

The numbers $B_{n}=A_{1, n}$, known as the Bernoulli numbers, are well known [4]. In particular,

$$
\begin{gathered}
A_{1,2 n+1}=0 \quad(n \geq 1) \\
(-1)^{n-1} A_{1,2 n}>0
\end{gathered}
$$

and by the Staudt-Clausen Theorem,

$$
A_{1,2 n}=G_{2 n}-\sum_{p-1 \mid 2 n} \frac{1}{p}
$$

where $n \geq 1, G_{2 n}$ is an integer, and the summation is over all primes p such that $p-1$ divides $2 n$.

The case $k=2$ has also been studied [3]. It is known that

$$
2 A_{2, n} \equiv 1(\bmod 4) \quad(n>1)
$$

and for p an odd prime

$$
\begin{aligned}
& \frac{p^{n}}{[n(p-2)]!} A_{2, n(p-2)} \equiv 2^{n}(\bmod p) \quad(n \geq 0) \\
& \frac{p^{[n /(p-2) \mid+1}}{n!} A_{2, n} \equiv 0(\bmod p) \quad(n \geq 0)
\end{aligned}
$$

The purpose of this paper is to derive properties of $A_{k, n}$, for $k \geq 1$. From (1.1) we obtain the recurrence formula

$$
\begin{gather*}
A_{k, 0}=1 \tag{1.2}\\
\frac{A_{k, n}}{n!}=-k!\sum_{r=0}^{n-1} \frac{A_{k, r}}{r!(n+k-r)!} \quad(n>0)
\end{gather*}
$$

or equivalently

$$
\begin{equation*}
\sum_{r=0}^{n}\binom{n+k}{r} A_{k, r}=0 \quad(n>0) \tag{1.3}
\end{equation*}
$$

Received November 20, 1966.

