ON A SPACE OF FUNCTIONS OF WIENER

BY RICHARD R. GOLDBERG

- 1. Introduction. In the formulation of one of his tauberian theorems [3;27], Wiener introduced continuous functions f on $(-\infty,\infty)$ for which $\sum_{k=-\infty}^{\infty} \max_{k\leq x\leq k+1}|f(x)|$ converges. In this paper we give a systematic analysis of the space of all such functions normed with this sum. The space turns out to be a Banach algebra (with convolution as multiplication) and is a direct sum of two subspaces, one of which is (equivalent to) the sequence space l^1 . Knowledge of this structure enables us to find all continuous linear functionals on the space. This in turn allows us to formulate the tauberian theorem mentioned above in a way that permits a quick proof via distribution theory modelled on a proof of Korevaar of the "famous" tauberian theorem. Finally, we discuss the analogous space of functions on the plane which differs from the case of the line in some respects.
- 2. The structure of the space T. For $k=0,\pm 1,\pm 2,\ldots$ let I_k denote the closed interval [k, k+1]. Let T be the linear space of all continuous f on $(-\infty, \infty)$ for which

$$||f||_T = \sum_{k=-\infty}^{\infty} \max_{x \in I_k} |f(x)|$$

is finite. It is readily verified that $||\cdot||_T$ is a norm. For $f \in T$ we have

$$\int_{-\infty}^{\infty} |f| = \sum_{k=-\infty}^{\infty} \int_{I_k} |f| \le \sum_{k=-\infty}^{\infty} \max_{x \in I_k} |f(x)| = ||f||_T.$$

Hence $T \subset L^1(-\infty, \infty)$ and $||f||_1 \leq ||f||_T$ for $f \in T$. Also it is clear that if $f \in T$, then f vanishes at infinity.

Theorem A. The normed linear space T is complete. That is, T is a Banach space.

Proof. Let $\{f_n\}_{n=1}^{\infty}$ be a Cauchy sequence in T. Then given $\epsilon > 0$ there exists N such that if $m, n \geq N$, then

(1)
$$||f_m - f_n||_T = \sum_{k=-\infty}^{\infty} \max_{x \in I_k} |f_m(x) - f_n(x)| < \epsilon.$$

Hence, for any fixed k,

$$\max_{x \in V} |f_m(x) - f_n(x)| < \epsilon$$

Received November 9, 1966.