
ON CONVOLUTION AND FOURIER SERIES

BY JACK BRYANT

1. Introduction. Consider the convolution g * h of integrable periodic func-
tions g and h in L(0, 2r) defined by

g* h(x) r-l fo’ g(x t)h(t) dr.

If ] is a given function in L(O, 2r) satisfying "suitable" conditions, when is it
possible to write ] g * h, with g e L(0, 2r) and h satisfying the same "suitable"
conditions? We answer this question for some interpretations of "suitable",
extending a theorem of Salem [1; 108-14] in which "suitable" means "] L
1 _<: p < ," or "] C[0, 2r]".
We base all our results on a rather tedious calculation; this is presented in 2,

along with some estimates and a lemma on (C, 1) summability of series. In
3, we furnish at least a partial answer to the above question, and point out
connections with (C, 1) summability of Fourier series.
We conclude our introductory remarks by introducing the following notation:

If ] is a function, rff is the function defined by (rh])(x) ](x -b h). B will denote
a Banach space with norm [[. [[. If f L, then S[f] A. denotes the Fourier
series of f, {s.(x) the partial sums and a.(x) the (C, 1) means of S[f]. If {),.}
is a sequence, we write AX. . ),+1 and A2),. A. A).+l "A" will
denote an absolute constant, not always the same each time it appears.

2. The principal calculations. Let {A.} be a sequence of elements of a
linear space, ] any element, and {.} be a sequence of numbers. Suppose
s. Ak, t kkA, and let . and r. be the (C, 1) means of Ak and
XA, respectively. Then, summing by parts twice, we obtain

;- (n + ) x( + 1) + ;- x( + )- (n + ) x( + ) + - x+( + )
+ (n + )...
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