A NOTE ON UPPER SEMICONTINUOUS DECOMPOSITIONS OF THE n-SPHERE

By JEHPILL KIM

Given a collection H of disjoint compact sets in a topological space, we denote by H^* the sum of sets in H. An element g of H is called a *central element* if it contains a limit point of the set $H^* - g$. Otherwise g is called *noncentral*. The collection H is said to be *discrete* if every element of H is noncentral.

Let H_0 be a collection of disjoint compact sets in a space. The collection of all central elements of H_0 is denoted by H_1 . For each countable ordinal $\alpha \geq 1$, define H_{α} as follows: Suppose that the collections H_{β} are already defined for all ordinals $\beta < \alpha$. Then H_{α} will consist of all those elements of H_0 which are central in each H_{β} , $\beta < \alpha$. It is to be noted that $H_{\alpha} \subset H_{\beta}$ if $\alpha \geq \beta$. An element g of H_0 is said to be essential or inessential according as g belongs to H_{α} for every countable ordinal α or not. Finally, we call H_0 a countably discrete collection if there exists a countable ordinal α such that H_{α} is a null collection.

Let G be an upper semicontinuous decomposition of the n-sphere S^n . The collection of nondegenerate elements of G is denoted by H_0 . We show in this paper that every inessential element of H_0 has an open n-cell as complement whenever the decomposition space of G is homeomorphic to S^n . If, in particular, H_0 is countably discrete, then the decomposition space of G is topologically equivalent to S^n when and only when each element of G has an open n-cell complement.

The starting point of our work was to prove a converse of a result due to Bing [1, Theorem 1] and thereby to generalize Theorems 3 and 6 of [4]. Namely, under the condition that G has at most a countable number of nondegenerate elements whose sum is a G_{δ} -set, we will prove that the decomposition space of G is homeomorphic to S^n if and only if each element of G has an open n-cell as complement. Indeed, this is done by showing that the property of the collection H_0 of nondegenerate elements of G being countably discrete is characterized by the above condition imposed on G.

We begin with some lemmas.

Lemma 1. Let H_0 be a collection of disjoint compact sets in a space. For each inessential element g of H_0 , there exists a unique countable ordinal α such that g is noncentral in H_{α} . In other words, $H_0 - K$ is the union of disjoint discrete collections $H_{\alpha} - H_{\alpha+1}$, where K denotes the collection of all essential elements of H_0 .

Proof. Let g be any inessential element. By definition, there exists a countable ordinal β such that g is not an element of H_{β} . Let β be the least

Received July 1, 1965.