LEFT AND RIGHT BOUNDARY CLUSTER SETS IN n-SPACE

By H. T. Mathews

1. Introduction. Let f be a function from the open unit disk (in the complex plane) into the extended complex plane, and let C denote the unit circle. In 1960 Collingwood [2] proved the following.

Theorem. The set of points p on C such that $C_{B L}(f, p)$ is unequal to $C(f, p)$ is at most countable.

Corollary 1. The set of points p on C such that $C_{B L}(f, p)$ is unequal to $C_{B R}(f, p)$ is at most countable.

Corollary 2. The set of points p on C such that $C_{B}(f, p)$ is unequal to $C(f, p)$ is at most countable.

We shall establish some results similar to these for functions in n-space ($n>2$).
2. Definitions. Let E^{n} denote Euclidean n-space, and let $d_{n}(p, q)$ denote the usual distance between the points p and q in E^{n}. The open unit ball D^{n} is the set of all points p in E^{n} such that $d_{n}(p, 0)<1$, and the boundary of D^{n} will be denoted by B^{n}. An n-cell is any set homeomorphic to the closure $B^{n} \cup D^{n}$ of D^{n}, and the n-sphere S^{n} is the one-point compactification of E^{n}.

Let f be a function from D^{n} into S^{n}, and let p be a point in B^{n}. The cluster set $C(f, p)$ of f at p is the set of all points s in S^{n} such that there exists a sequence $\left\{z_{j}\right\}$ of points from D^{n} with $z_{i} \rightarrow p$ and $f\left(z_{j}\right) \rightarrow s$. The boundary cluster set $C_{B}(f, p)$ of f at p is the set $\cap(\cup C(f, q))^{*}$, where the intersection is taken over all neighborhoods N of p and the union over all q in $N \cap B^{n}$ with $q \neq p$ (the asterisk denotes closure).

Collingwood's proof of the theorem stated in the introduction is easily modified so that it yields the following proposition.

Corollary 2^{\prime}. The set of points p in B^{n} such that $C_{B}(f, p)$ is unequal to $C(f, p)$ is at most countable.

In order to extend to functions in n-space the definitions of left and right boundary cluster sets, we introduce a notion of leftness and rightness at points in B^{n}.

Let p be a point in B^{n}. An $(n-2)$-cell Γ in B^{n} will be called a separating cell for p if p lies in the combinatorial interior of Γ. Let Γ be a separating cell for p, and let N be a spherical neighborhood of p (in the relative topology of B^{n})

Received November 5, 1965. The results presented here are part of the author's doctoral dissertation written at Tulane University under the direction of Professor G. S. Young.

