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1. Introduction. Let f be a function from the open unit disk (in the complex
plane) into the extended complex plane, and let C denote the unit circle. In 1960
Collingwood [2] proved the following.

THEOREM. The set o/points p on C such that C(], p) is unequal to C(], p)
is at most countable.

Coaohv 1. The set o] points p on C such that C(], p) is unequal to
C(], p) is at most countable.

Coaoxnv 2. The set o] points p on C such that C(], p) is unequal to C(], p)
is at most countable.

We shll establish some results similar to these for functions in n-spce
(n > ).

2. Definitions. Let E denote Euclidean n-space, and let d.(p, q) denote the
usual distance between the points p and q in E. The open unit ball D is
the set of all points p in E such that d(p, 0) < 1, and the boundary of D will
be denoted by B. An n-cell is any set homeomorphic to the closure B/) D
of D, and the n-sphere S is the one-point compactification of E.

Let ] be a function from D into S, and let p be a point in B. The cluster set
C(], p) of ] at p is the set of all points s in S such that there exists a sequence
{z.} of points from D with z -- p and ](z) s. The boundary cluster set
C(f, p) of ] at p is the set (LC(], q))*, where the intersection is taken over
all neighborhoods N of p and the union over all q in N ’ B with q p (the
asterisk denotes closure).

Collingwood’s proof of the theorem stated in the introduction is easily modified
so that it yields the following proposition.

COROLLARY 2’. The set o/ points p in B" such that C(], p) is unequal to
C(], p) is at most countable.

In order to extend to functions in n-space the definitions of left and right
boundary cluster sets, we introduce a notion of leftness and rightness at points
in B".

Let p be a point in B’. An (n 2)-cell F in B" will be called a separating cell
for p if p lies in the combinatorial interior of F. Let F be a separating cell for p,
and let N be a spherical neighborhood of p (in the relative topology of B)
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