RECURRENCE TIMES AND CAPACITIES FOR FINITE ERGODIC CHAINS

By GUY LOUCHARD

- I. Introduction. Let us first recall a few well-known results concerning the connection between potential theory and certain Markov processes.
- 1. Let $\mathbf{r}(3)$ be a Brownian motion in $E^3(3 \ \epsilon \ [0, \ \infty), \ \mathbf{r}(0) = 0)$ and let Ω be a closed, bounded region, whose boundary Σ is smooth. If we denote by $H(\mathbf{y})$ the probability that the Brownian motion $\mathbf{y} + \mathbf{r}(3)$ never reaches Ω , it has been shown (see for instance Ito and Mc Kean [3]) that $H(\mathbf{y})$ has the following properties:

(1.1)
$$H(\mathbf{y}) = 1 - \int_{\Omega} \frac{\mu(d\varrho)}{|\mathbf{y} - \varrho|} \qquad \mathbf{y} \notin \Omega$$
$$0 = 1 - \int_{\Omega} \frac{\mu(d\varrho)}{|\mathbf{y} - \varrho|} \qquad \mathbf{y} \in \Omega$$

where $\mu(\cdot)$ is a completely additive non-negative set function with support on Σ . H(y) is harmonic outside Ω , vanishes on Σ and $H(y) \to 1$ as $|y| \to \infty$. Define

$$C(\Omega) = \int_{\Omega} \mu(d\varrho).$$

It is also known that C satisfies the Kelvin principle, i.e.

(1.2)
$$\frac{1}{C(\Omega)} = \inf \int_{\Omega} \int_{\Omega} \frac{\varphi(\mathbf{r})\varphi(\varrho)}{|\varrho - \mathbf{r}|} d\varrho d\mathbf{r}$$

where inf is taken over all functions $\varphi \in L^2(\Omega)$ such that

$$\int_{\Omega} \varphi(\varrho) \ d\varrho = 1.$$

- $C(\Omega)$ is, in fact, the capacity of Ω and 1 H(y) is the generalized capacitary potential.
- 2. Let $\mathbf{r}(5)$ be a Brownian motion in $E^2(5 \ \mathbf{\epsilon} \ [0, \infty))$. Define Ω as in §I.1 and let the random variable $T(\mathbf{y})$ be the time spent to reach Ω starting from \mathbf{y} at $\mathbf{r} = \mathbf{r} =$

(1.3)
$$\Pr\left[T(\mathbf{y}) \geq t\right] \sim \frac{H(\mathbf{y})}{\log \sqrt{t}} \quad t \uparrow \infty \quad \mathbf{y} \notin \Omega$$

Received August 10, 1964. This work was sponsored by the Belgian American Educational Foundation.