MINIMAL PROJECTIVE EXTENSIONS OF COMPACT SPACES

By M. Henriksen and M. Jerison

A compact space E is called projective if for each mapping ψ of E into a compact space X, and each continuous mapping τ of a compact space Y onto X, there is a continuous mapping ϕ of E into Y such that $\psi=\tau \circ \phi$. Gleason proved in [1] that a compact space E is projective if and only if it is extremally disconnected. (A topological space E is extremally disconnected if the closure of each of its open sets is open. It is well known that E is extremally disconnected if and only if the Boolean algebra of open and closed subsets of E is complete.) Gleason showed, moreover, that for each compact space X, there is a unique compact extremally disconnected space $R(X)$, and a continuous mapping π_{X} of $\mathscr{R}(X)$ onto X such that no proper closed subspace of $\mathfrak{R}(X)$ is mapped by π_{X} onto X. (An alternate development of Gleason's results is given by Rainwater in [2].) We call $\mathscr{R}(X)$ the minimal projective extension of X; it can be described as follows.

Let $R(X)$ denote the family of regular closed subsets of X. (A closed subset of X is called regular if it is the closure of its interior.) Then $R(X)$ is a complete Boolean algebra if we define for α, β in $R(X)$

$$
\alpha \vee \beta=\alpha \cup \beta ; \alpha \wedge \beta=\operatorname{clint}(\alpha \cap \beta)
$$

Note that the Boolean complement α^{*} of α is given by

$$
\alpha^{*}=\operatorname{cl}(X \sim \alpha) .
$$

The space $\mathcal{R}(X)$ is the Stone space of $R(X)$. That is, the points of $\mathcal{R}(X)$ are the prime ideals of $R(X)$, and a base for the topology of $R(X)$ is the family of sets $\{P \varepsilon R(X): \alpha \notin P\}, \alpha \varepsilon R(X)$.

The mapping π_{X} is defined by letting $\pi_{X}(P)=\cap\{\alpha \varepsilon R(X): \alpha \notin P\}$ for each $P \varepsilon \mathbb{R}(X)$.

1. Lemma. The mapping $\alpha \rightarrow \pi_{X}^{-1}(\alpha)$ is an isomorphism of $R(X)$ onto the Boolean algebra of open and closed subsets of $R(X)$.

From Gleason's theorems we deduce quickly the following induced mapping theorem which motivates this paper.
2. Theorem. Let τ be a continuous mapping of a compact space Y onto X. Then there exists a continuous mapping $\bar{\tau}$ of $\mathbb{R}(Y)$ onto $\mathfrak{R}(X)$ such that $\tau \circ \pi_{Y}=$ $\pi_{X} \circ \bar{\tau}$. Thus the following diagram is commutative.

Received December 18, 1963. The authors were supported (in part) by the National Science Foundation.

