MINIMAL PROJECTIVE EXTENSIONS OF COMPACT SPACES

By M. HENRIKSEN AND M. JERISON

A compact space E is called *projective* if for each mapping ψ of E into a compact space X, and each continuous mapping τ of a compact space Y onto X, there is a continuous mapping ϕ of E into Y such that $\psi = \tau \circ \phi$. Gleason proved in [1] that a compact space E is projective if and only if it is extremally disconnected. (A topological space E is extremally disconnected if the closure of each of its open sets is open. It is well known that E is extremally disconnected if and only if the Boolean algebra of open and closed subsets of E is complete.) Gleason showed, moreover, that for each compact space X, there is a unique compact extremally disconnected space $\Re(X)$, and a continuous mapping π_X of $\Re(X)$ onto X such that no proper closed subspace of $\Re(X)$ is mapped by π_X onto X. (An alternate development of Gleason's results is given by Rainwater in [2].) We call $\Re(X)$ the minimal projective extension of X; it can be described as follows.

Let R(X) denote the family of regular closed subsets of X. (A closed subset of X is called *regular* if it is the closure of its interior.) Then R(X) is a complete Boolean algebra if we define for α , β in R(X)

$$\alpha \lor \beta = \alpha \cup \beta; \alpha \land \beta = \text{cl int} (\alpha \cap \beta).$$

Note that the Boolean complement α^* of α is given by

$$\alpha^* = \operatorname{cl}\left(X \sim \alpha\right).$$

The space $\mathfrak{R}(X)$ is the Stone space of R(X). That is, the points of $\mathfrak{R}(X)$ are the prime ideals of R(X), and a base for the topology of $\mathfrak{R}(X)$ is the family of sets $\{P \in \mathfrak{R}(X) : \alpha \notin P\}, \alpha \in R(X)$.

The mapping π_X is defined by letting $\pi_X(P) = \bigcap \{ \alpha \in R(X) : \alpha \notin P \}$ for each $P \in \mathfrak{R}(X)$.

1. LEMMA. The mapping $\alpha \to \pi_X^{-1}(\alpha)$ is an isomorphism of R(X) onto the Boolean algebra of open and closed subsets of $\mathfrak{R}(X)$.

From Gleason's theorems we deduce quickly the following induced mapping theorem which motivates this paper.

2. THEOREM. Let τ be a continuous mapping of a compact space Y onto X. Then there exists a continuous mapping $\bar{\tau}$ of $\Re(Y)$ onto $\Re(X)$ such that $\tau \circ \pi_Y = \pi_X \circ \bar{\tau}$. Thus the following diagram is commutative.

Received December 18, 1963. The authors were supported (in part) by the National Science Foundation.