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1. Introduction. Throughout this paper K will denote a field and K will
be the algebra of n by n matrices over K. The object of the paper is to refute
the conjectare (referred to in [3; 345] as one of long standing) that a maximal
commutative subalgebra of K must have dimension at least n. The counter-
example, a 13-dimensional maximal commutative subalgebra of K14, is presented
in 3. In 4 we have a consequence of the example: Theorem 4.1, which states
that zero is the greatest lower bound of the set of numbers {(dim R)/n R
a maximal commutative subalgebra of K n 1, 2, }. The Theorems
prerequisite to these results are in 2.

DEFINITION A. If P is the radical of the commutative algebra R, the
exponent e of R is defined to be the index of nilpotency of P. Thus P" 0,
P-I 0.
The 13-dimensional maximal commutative subalgebra of K4 occurs at

exponent 3. In 5 (Theorem 5.1) it is proved ha he dimension of R is a
least n, if the exponent of the maximal commutative subalgebra R of K is
one or two.

It will be recalled that 1 + [n/4] is the maximal dimension of commutative
subalgebras of K. This was proved by Schur [6] for the complex field K and
by Jacobson [5] for arbitrary fields K.

2. Theorems prerequisite to the main results.

DEFINITION B. If M is a unital R-module, where R is a commutative ring
with unit element, we denote by R*(M), or simply by R*, the set of R-endo-
morphisms of M, each of which is a right multiplication

ar x ---> xa, x M

for some element a of R.

Remark. If M is the n-dimensional representation space of the commutative
subalgebra R of K, it is evident that the maximal commutativity of R in K
is equivalent with the property

Hom (M, M) R*

THEOREM 2.1. I] M is a cyclic unital R-module for the commutative ring
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