GENERALIZED HILBERT KERNELS

By Lucio Artiaga

1. Introduction. A function k(x, y) is called a Fourier kernel if for some functions f(x), g(x):

$$g(x) = \int_0^\infty k(xy)f(y) \ dy$$

implies

(1)
$$f(x) = \int_0^\infty k(xy)g(y) \, dy.$$

It is known that its Mellin transform $k^{\star}(s)$ satisfies the functional relation $k^{\star}(s) \ k^{\star}(s-1) = 1$, [5; 212-213]. Using the function $k^{\star}(s) = \cot s \Pi/2$ the kernel $k(x) = 2/\Pi \cdot 1/1 - x^2$ is obtained.

From the reciprocal formulas (1) with this kernel it is possible to derive the reciprocity for Hilbert transforms,

$$g(x) = \frac{1}{\Pi} \text{ P.V. } \int_{-\infty}^{\infty} \frac{f(t)}{x - t} dt, \qquad f(x) = \frac{-1}{\Pi} \text{ P.V. } \int_{-\infty}^{\infty} \frac{g(t)}{x - t} dt, \qquad [5; 219].$$

This suggests that similar results might be obtained by taking $k^{\star}(s) = \cot^{*} s \Pi/2$.

We find that this leads formally to the following class of kernels,

(2)
$$k(x) = \frac{2}{\Pi} \cdot \frac{1}{(n-1)!} \frac{p_{n-1}\left(\frac{2}{\Pi}\log x\right)}{1-x^2} + c_n \,\,\delta(x-1),$$

where $p_n(x)$ is a polynomial of degree n in x satisfying the recurrence equation

(3)
$$p_n(x) = -xp_{n-1}(x) - n(n-1)p_{n-2}(x),$$

where $p_0(x) = 1$, $p_1(x) = -x$ and c_n is a constant equal to 0 if n is odd, and equal to $(-1)^{\frac{1}{2}n}$ if n is even. $\delta(x)$ is Dirac's function. It happens that $p_n(x)$ satisfies the following finite difference equation

(4)
$$f_{n+1}(x) = xf_n(x) - n(n-1)f_{n-1}(x).$$

The polynomials $f_n(x)$ have been investigated by Richard Kelisley and L. Carlitz in 1959 [2], [3].

In §2 we investigate the recurrence relation (3). In §3 it is proved that $p_n(x)$ satisfies the difference equation (4). In §4, the transformation for n = 2 is

Received June 2, 1963. The author wishes to thank Professor A. P. Guinan for suggesting this problem.