FUNCTIONS ON ALGEBRAS UNDER HOMOMORPHIC MAPPINGS

BY R. F. RINEHART AND JACK C. WILSON

Introduction. In this paper an algebra will denote a linear, associative, finite dimensional algebra, with identity, over the real or complex field \mathfrak{F} . Let \mathfrak{A} be an algebra and let the algebra \mathfrak{B} be the image of \mathfrak{A} under a homomorphism or anti-homomorphism Ω . A function f with domain and range in \mathfrak{A} does not usually induce a (single-valued) function in \mathfrak{B} under Ω , i.e. for ξ in the domain of f, the induced "function" g in \mathfrak{B} defined by $g(\Omega\xi) = \Omega f(\xi)$ need not satisfy: $\Omega\xi_1 = \Omega\xi_2$ implies $g(\Omega\xi_1) = g(\Omega\xi_2)$.

The present paper seeks conditions on the function f under which Ω does induce a function in \mathfrak{B} . It is found that mere Hausdorff-differentiability of f will insure this, and that the induced function in \mathfrak{B} will also be Hausdorff-differentiable. It is also shown that any primary function [5] (i.e. the extension to \mathfrak{A} of a function w(z) of a complex variable) has this property, whether Hausdorffdifferentiable or not, and that the function induced in \mathfrak{B} will be the \mathfrak{B} -extension of the same complex function w(z).

2. Congruence-preserving functions. It is natural to first examine the behavior of the function f with domain and range in \mathfrak{A} with respect to the ideals of \mathfrak{A} .

DEFINITION 2.1 A function f with domain \mathfrak{D} and range in the algebra \mathfrak{A} is congruence-preserving in \mathfrak{D} , if for any ideal \mathfrak{F} of \mathfrak{A} , ξ , $\eta \in \mathfrak{D}$ and $\xi \equiv \eta(\mathfrak{F})$ imply $f(\xi) \equiv f(\eta)(\mathfrak{F})$.

THEOREM 2.1. If a function f with domain and range in \mathfrak{A} is H-differentiable on an open convex set \mathfrak{C} of \mathfrak{A} , then f is congruence-preserving in \mathfrak{C} .

Let us first recall the definition of H(ausdorff)-differentiability [2, 7]. Let $\epsilon_1, \dots, \epsilon_n$ be a basis for \mathfrak{A} with ϵ_1 the identity of \mathfrak{A} .

DEFINITION 2.2 A function $f = \sum_{i=1}^{n} f_i(x_1, \dots, x_n)\epsilon_i$ with domain \mathfrak{D} and range in an algebra \mathfrak{A} is Hausdorff differentiable at a point $\xi = \sum_{i=1}^{n} x_i \epsilon_i$ of an an open set \mathfrak{R} in \mathfrak{D} if the differential

$$d(f(\xi); d\xi) = \sum_{i,j=1}^{n} \frac{\partial f_i}{\partial x_j} dx_i \epsilon_i,$$

 $(d\xi = \sum_{i=1}^{n} dx_i \epsilon_i)$ exists for all $d\xi \in \mathfrak{A}$ and is expressible in the form

(2.1)
$$d(f(\xi); d\xi) = \sum_{i,j=1}^{n} P_{ij} \epsilon_i d\xi \epsilon_j$$

Received June 16, 1962. The work of the first author was supported by ONR grant.