ON THE CONGRUENCE
$$ax^3 + by^3 + cz^3 + dxyz \equiv n \pmod{p}$$

By L. J. Mordell

Let p be a prime and let f(x, y, z) be an irreducible cubic polynomial with integer coefficients which is neither a function of only two independent variables nor homogeneous in linear functions of x, y, z. Then there is the *Conjecture*.

The number N of solutions of the congruence

$$f(x, y, z) \equiv 0 \pmod{p}$$

satisfies

$$(2) N = p^2 + O(p),$$

where the implied constant is an absolute one.

I have proved this in the special cases

$$(3) z^2 \equiv f(x, y)$$

when [1], [2] [3]

$$f(x, y) \equiv ax^{3} + bx^{2}y + cxy^{2} + dy^{3} + k,$$

$$f(x, y) \equiv ax^{3} + bx^{2}y + cxy^{2} + dy^{3} + lx + my,$$

$$f(x, y) \equiv ax^{3} + by^{3} + cxy + d.$$

Surprisingly enough, in the last case, there is a simple closed expression for N. The general case (3) still awaits solution.

The case

$$ax^3 + by^3 + cz^3 \equiv n, \quad abcn \not\equiv 0,$$

has been known for a long time. I now prove that the congruence

(4)
$$ax^3 + by^3 + cz^3 + dxyz \equiv n, \quad abcd \not\equiv 0,$$

has $N=p^2+O(p)$ solutions if $n\not\equiv 0$, and $N=p^2+O(p^{\frac{3}{2}})$ solutions if $n\equiv 0$. Suppose first that $n\equiv 0$. Clearly $N=p^2+O(p^{\frac{3}{2}})$ since the number of solutions of $aX^3+bY^3+c+dXY\equiv 0$ is $p+O(p^{\frac{1}{2}})$. Suppose hereafter that $n\not\equiv 0$. The result (2) is trivially true when $p\equiv 2\pmod 3$. For if $z\equiv 0$, (4) has O(p) solutions. When $z\not\equiv 0$, we put x=Xz, y=Yz, and then

$$z^3(aX^3 + bY^3 + c + dXY) \equiv n.$$

These are O(p) values of X, Y for which the coefficient of z^3 is $\equiv 0$. Excluding these, each of the p^2 values of X, Y gives a unique value for z.

Received October 1, 1962. This research was supported by the Air Force Office of Scientific Research.