THE n-th DERIVATIVE OF A CLASS OF FUNCTIONS

By DAvID ZEITLIN

1. Recently, Carlitz [1], using Lagrange’s formula (see [4; 125]), has shown,
for arbitrary r, that
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In this paper, we will establish formulas for the n-th derivative of a class of
functions, which, as one application, yield (1.1) as a special case, as well as
other identities involving Bernoulli and Stirling numbers.

2. The following theorem provides a generalization of (1.1):
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form = n 4+ 1, (2.1) reduces to (1.1).
Proof. By Lagrange’s general formula [4, 125], if w = z/¢(z), $(0) # 0, then
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If we choose ¢(z) = z/[(x + 1)" — 1], fx) = [p@)]" ™", thenw = (z + 1)" — 1,
and
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We now proceed to expand the left-hand side of (2.3) into a power series in w.
Now
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