THE INTEGRATION OF THE GENERALIZED DERIVATIVES

By C. Kassimatis

1. Introduction. We begin with

Definition 1.1. Let $F(x)$ be a single-valued function defined over a given domain. We define the operator H_{n} as follows

$$
\begin{align*}
& H_{n}\left[F(x): x_{1}, \cdots, x_{n+1}\right] \tag{1.1}\\
& \quad=\left(x_{n+1}-x_{1}\right) \cdots\left(x_{n+1}-x_{n}\right) \sum_{i=1}^{n+1} F\left(x_{i}\right) /\left\{\left(z-x_{1}\right) \cdots\left(z-x_{n+1}\right)\right\}_{z=x_{i}}^{\prime}
\end{align*}
$$

for $n=1,2,3, \cdots$, where the "prime" denotes ordinary differentiation.
If we set $w_{n+1}(z)=\left(z-x_{1}\right) \cdots\left(z-x_{n}\right)$, then formula (1.1) becomes

$$
H_{n}\left[F(x): x_{1}, \cdots, x_{n+1}\right]=w_{n+1}\left(x_{n+1}\right) \sum_{i=1}^{n+1} F\left(x_{i}\right) / w_{n+2}^{\prime}\left(x_{i}\right) .
$$

In order to obtain $H_{n}\left[F(x): u_{1}, \cdots, u_{n}, x\right]$ it suffices to set $x_{1}=u_{1}, \cdots, x_{n}=$ $u_{n}, x_{n+1}=x$ in formula (1.1).

The following properties of H_{n} are direct consequences of Definition 1.1:

$$
\begin{equation*}
H_{n}\left[\sum_{i=1}^{m} a_{i} F_{i}(x): x_{1}, \cdots, x_{n+1}\right]=\sum_{i=1}^{m} a_{i} H_{n}\left[F_{i}(x): x_{1}, \cdots, x_{n+1}\right] \tag{i}
\end{equation*}
$$

where a_{1}, \cdots, a_{m} are arbitrary constants.
(ii) If $F(x)$ reduces to a polynomial of degree at most $n-1$, then

$$
H_{n}\left[F(x): x_{1}, \cdots, x_{n+1}\right]=0 .
$$

(iii) If $x_{n+1}=x_{i}, \quad(i=1, \cdots, n ; n \geq 1)$, then

$$
H_{n}\left[F(x): x_{1}, \cdots, x_{n+1}\right]=0
$$

(iv) $H_{n}\left[F(x): x_{1}, \cdots, x_{n+1}\right]$ remains invariant under all permutations of the points x_{1}, \cdots, x_{n}.

$$
\begin{equation*}
H_{n}\left[\left\{w_{n+1}\left(x_{n+1}\right)\right\}^{-1} F(x): x_{1}, \cdots, x_{n+1}\right] \tag{v}
\end{equation*}
$$

remains invariant under all permutations of the distinct points x_{1}, \cdots, x_{n+1}.
By means of H_{n} we define a generalized derivative as follows
Definition 1.2. Let $f(x)$ be defined and continuous in the interval (a, b) and let x_{1}, \cdots, x_{n+1} be distinct constants. Suppose that the points x, $x+x_{1} h, \cdots, x+x_{n+1} h$ belong to the interval (a, b). If

$$
\begin{equation*}
H_{n}\left[n!\left\{h^{n} w_{n+1}\left(x_{n+1}\right)\right\}^{-1} f(x): x+x_{1} h, \cdots, x+x_{n+1} h\right] \tag{1.2}
\end{equation*}
$$

Received March 6, 1962. The work was sponsored by the U. S. Army Research Office, Durham.

