THE INTEGRATION OF THE GENERALIZED DERIVATIVES

By C. Kassimatis

1. Introduction. We begin with

DEFINITION 1.1. Let F(x) be a single-valued function defined over a given domain. We define the operator H_n as follows

(1.1)
$$H_n[F(x):x_1, \cdots, x_{n+1}] = (x_{n+1} - x_1) \cdots (x_{n+1} - x_n) \sum_{j=1}^{n+1} F(x_j) / \{(z - x_1) \cdots (z - x_{n+1})\}_{z=x_j}^{z=x_j}$$

for $n = 1, 2, 3, \cdots$, where the "prime" denotes ordinary differentiation. If we set $w_{n+1}(z) = (z - x_1) \cdots (z - x_n)$, then formula (1.1) becomes

$$H_n[F(x): x_1, \cdots, x_{n+1}] = w_{n+1}(x_{n+1}) \sum_{j=1}^{n+1} F(x_j) / w'_{n+2}(x_j)$$

In order to obtain $H_n[F(x): u_1, \dots, u_n, x]$ it suffices to set $x_1 = u_1, \dots, x_n = u_n$, $x_{n+1} = x$ in formula (1.1).

The following properties of H_n are direct consequences of Definition 1.1:

(i)
$$H_n\left[\sum_{i=1}^m a_i F_i(x): x_1, \cdots, x_{n+1}\right] = \sum_{i=1}^m a_i H_n[F_i(x): x_1, \cdots, x_{n+1}]$$

where a_1 , \cdots , a_m are arbitrary constants.

(ii) If F(x) reduces to a polynomial of degree at most n - 1, then

$$H_n[F(x): x_1, \cdots, x_{n+1}] = 0.$$

(iii) If
$$x_{n+1} = x_i$$
, $(i = 1, \dots, n; n \ge 1)$, then
 $H_n[F(x): x_1, \dots, x_{n+1}] = 0.$

(iv) $H_n[F(x): x_1, \dots, x_{n+1}]$ remains invariant under all permutations of the points x_1, \dots, x_n .

(v)
$$H_n[\{w_{n+1}(x_{n+1})\}^{-1}F(x):x_1, \cdots, x_{n+1}]$$

remains invariant under all permutations of the distinct points x_1, \dots, x_{n+1} . By means of H_n we define a generalized derivative as follows

DEFINITION 1.2. Let f(x) be defined and continuous in the interval (a, b)and let x_1, \dots, x_{n+1} be distinct constants. Suppose that the points x, $x + x_1h, \dots, x + x_{n+1}h$ belong to the interval (a, b). If

(1.2)
$$H_n[n! \{h^n w_{n+1}(x_{n+1})\}^{-1} f(x) : x + x_1 h, \cdots, x + x_{n+1} h]$$

Received March 6, 1962. The work was sponsored by the U. S. Army Research Office, Durham.