SUMS OF SERIES INVOLVING BESSEL COEFFICIENTS
By E. W. PauL

1. Introduction. The Bessel coefficient of the first kind is defined by its
generating function as
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which is valid for all values of z and r(r ¢ 0). In connection with some un-
published work of the author, it was shown that Kepler’s equation of celestial
mechanics
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leads to the pair of inverse functions
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The first of these, (I), is obtained immediately from the generating function
alone, while the derivation of (II), which is equivalent to the Fourier series
expression of ¢*”” in terms of M is, for example, in [1; 71 ff].

Expansion II represents a variation of the Kapteyn series which is defined
as
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in which m and the coefficients a, are constants. The index of summation
affects the coefficient a as well as the order and argument of the Bessel coefficient
of each term of the sum. The same is true in (II); however, the argument
does not contain p. In (I) the argument is independent of the index of sum-
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