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1. Introduction.
1.1. In this paper we are concerned with the following question. Suppose
U. {U. a J} is minimal unitary dilation of contractions {T. on

Hilbert space H; what conditions on {T} force {U.} to be bilateral shift
operators?

1.2. We recall some definitions (see [4]). J denotes a totally ordered
set of indices a and ] denotes the set of those integer valued functions
m re(a)(- < re(a) <: ) for which {a re(a) 0} is a finite subset
of J.
We write m 0, m >_ n if for all a, re(a) 0, re(a) >_ n(a) respectively.

We define m n by (m n)a re(a) n(a) for all a, and we write -m for
0 m. We call m, n positive-disjoint if m _> 0, n >_ 0 and for each a at least one
of m(a), n(a) is 0.

If T. a J re bounded linear operators on a Hilbert space and m >_ 0,
we set T(m) T T where the indices in , ordered as in J, have been
denoted {1, r} for convenience; we define T(-m) to be (T(m))*. By
convention, T(0) 1.

If U. a J are commuting unitary operators on a Hilbert space K, and
m e (we do not require m >__ 0), then U(m) shall mean U(1) U() where

{1, r}. We shall write U(A) for the subspace spanned by
{U(m)A m ]} for a given subspace A of K. {U.} are said to be orthogonal
bilateral shiIt operators on K with S as shi]ted space if S is a subspace of K and
{U(m)S m . ]} are mutually orthogonal and spn K (that is, U(S) K).
Commuting unitary operators {U. acting on Hilbert space K H are

called a unitary dilation of {T. acting on H if for all x e H:

(1.1) T(m)x P,U(m)x ]or m >_ O.

tIere PH denotes the projection (orthogonal) onto H.
Note. {U. are required to be commuting but not IT. }.
The dilation {U. is called a Sz.-Nagy-Brehmer dilation if"

(1.2) T(-n) T(m)x P,U(-n) U(m)x ]or positive-disjoint
xH,

equivalently,

(U(m)x U(n)y) (T(m)x T(n)y) ]or positive-disjoint
x H, y H;
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