THE SCHOLZ-BRAUER PROBLEM IN ADDITION CHAINS

By A. A. Gioia, M. V. Subbarao, and M. Sugunamma

1. Introduction. Following A. Scholz [3], we say that a sequence of integers

$$
1=a_{0}, \quad a_{1}, a_{2}, \cdots, a_{r}=n
$$

is an addition chain for the positive integer n provided for each $i>0$ we have

$$
\begin{equation*}
a_{i}=a_{i}+a_{k} \text { for some } j, k<i \quad(j=k \quad \text { is allowed }) . \tag{1.1}
\end{equation*}
$$

The integer r is called the length of the chain. The smallest possible value of r is denoted $l(n)$. Our interest here is in the shortest chains for n, i.e. chains of smallest possible length.

Scholz proposed and Alfred Brauer proved that

$$
\begin{gather*}
q+1 \leq l(n) \leq 2 q, \text { for } 2^{a}+1 \leq n \leq 2^{a+1}, \quad q \geq 1 \tag{1.2}\\
l(a b) \leq l(a)+l(b) . \tag{1.3}
\end{gather*}
$$

Scholz conjectured that $l\left(2^{\alpha}-1\right) \leq l(q)+q-1, q \geq 1$. We will refer to this in the sequel as Scholz's conjecture. This conjecture has not yet been completely solved for general values of q. Partial solutions have been offered by Brauer [1], W. R. Utz [4], and Walter Hansen [2].

Brauer proved that Scholz's conjecture is true provided that among the shortest chains of q, there is at least one satisfying

$$
\begin{equation*}
a_{i}=a_{i-1}+a_{i}, \text { some } j<i \quad(i=1,2, \cdots, r) . \tag{1.4}
\end{equation*}
$$

(We refer to any chain satisfying (1.4) as a special chain of type A.) The minimal length of a special chain of type A for n is denoted $l^{*}(n)$. Hansen has shown that there are integers n for which $l^{*}(n)>l(n)$; thus, Scholz's conjecture is not proved by arguing that among the chains of shortest length there is one of type A.

Utz has shown that Scholz's conjecture is true whenever q has the form $q=2^{t}$ or $q=2^{s}+2^{t}, s>t \geq 0, s$ and t integral.

In this paper we will extend Utz's results by showing that the conjecture holds when q is of the form $q=2^{c_{1}}+2^{c_{2}}+2^{c_{3}}, c_{1}>c_{2}>c_{3} \geq 0$. In attempting to extend the result to the case when q is of the form $2^{c_{1}}+2^{c_{2}}+2^{c_{3}}+2^{c_{4}}$, we encountered some difficulties which we could not completely resolve. Our results are contained in Theorem 2. The question to be settled here is the value of $l(n)$ when $n=2^{c_{1}}+2^{c_{2}}+\cdots+2^{c_{i}}, c_{1}>c_{2}>\cdots>c_{i} \geq 0$. When $i=1$, $l(n)=c_{1}$; when $i=2, l(n)=c_{1}+1$; when $i=3, l(n)=c_{1}+2$. However, when $i=4, l(n)$ is $c_{1}+2$ is some cases and $c_{1}+3$ in others. We are not able to distinguish these two cases completely.

Received July 24, 1961; in revised form, April 20, 1962.

