SUBINVARIANT MEASURES FOR MARKOFF OPERATORS

By Jacob Feldman

1. Summary. Let (X, X, λ) be a σ-finite measure space, and P a nonnegative contraction on $\mathscr{L}_{\infty}(\lambda)$, such that $f_{n} \downarrow 0$ implies $P f_{n} \downarrow 0, \lambda$-almost everywhere. Such operators are discussed by E. Hopf in [4], and we shall call them Markoff operators on $\mathscr{L}_{\infty}(\lambda)$. We shall investigate the existence of P-invariant and P-subinvariant measures for such a P.

Definition. A measure $\mu \prec \lambda$ is called (sub)-invariant or P-(sub)-invariant if $\int \operatorname{Pf} d \mu(\leq) \int f d \mu$ for all $f \varepsilon \mathcal{L}_{\infty}^{+}(\lambda)$. The qualifying term "on S^{\prime} " will be used if such an equality (or inequality) holds only for f with support in the set S, where S is a fixed set of x.

Hopf has shown how to split X into a "conservative" part C and a "dissipative" part D. In §2 we shall split D further into A and B. A will be (roughly speaking) the points of D from which one cannot get to C, and $B=D-A$. If $\mathscr{L}_{\infty}(\lambda)$ is split into $\varepsilon_{A}+\varepsilon_{B}+\varepsilon_{C}$, where $\varepsilon_{i}=\{f \mid f$ has its support in $i\}$, then P has reducibility properties which can be summarized by writing it as a matrix:

In $\S 3$ it is shown (Corollary a) that a P-subinvariant measure must be P invariant on C (this is a generalization of a theorem of E . Hopf in [4] and E , Nelson in [5]). A corollary of this is that any P-subinvariant measure on \boldsymbol{X} assigns measure 0 to B. In view of the reducibility of P, this shows that all we need consider are the two extreme cases of the purely conservative operator (where $C=X$) and the purely dissipative operator (where $D=X$).
For a dissipative operator P on $\mathscr{L}_{\infty}(\lambda)$, it is easy to see that there exists at least one subinvariant measure equivalent to λ (§4), although perhaps there are no invariant ones (see the example in [5]).

In $\S 5$, the "process-on $-R$ " is studied. This device, essentially due to Halmos, was used by Harris in [3] to go from an invariant measure on a subset to a measure on the whole space. Some properties of this correspondence are needed for the subsequent sections.

For a conservative operator, there may well be no subinvariant measure.
Received March 15, 1961.

