ASYMPTOTIC RENEWAL THEOREMS IN THE ABSOLUTELY CONTINUOUS CASE

By R. H. FARRELL

1. Introduction. This paper presents some results on the solution $p(\cdot)$ of the integral equation of renewal theory

(1)
$$p(t) = \int_0^t p(x)g(t-x) dx + h(t).$$

We assume in the following that $g(\cdot)$ and $h(\cdot)$ are nonnegative Lebesgue measurable functions such that

$$1 = \int_0^\infty g(x) \ dx,$$

and

(3) if
$$t > 0$$
,
$$\int_0^t h(x) dx < \infty$$
.

The existence and uniqueness of solutions to (1) have been discussed by Feller [3]. For our purposes it is sufficient to know there is a uniquely determined function $p(\cdot)$ solving (1) and satisfying

(4) if
$$t > 0$$
, $p(t) \ge 0$ and $\int_0^t p(x) dx < \infty$.

Throughout, μ is defined by

$$\mu = \int_0^\infty x g(x) \ dx.$$

 $\mu = \infty$ is allowed and if $\mu = \infty$, the value of $1/\mu$ is zero.

In §2 we prove the following three theorems using only standard measure theory results.

Theorem 1. Suppose $p(\cdot)$ is a bounded nonnegative solution of (1).

- (A) If $\mu < \infty$, then $\int_0^\infty h(x) dx < \infty$.
- (B) If $\lim_{x\to\infty} p(x)$ exists, then $\lim_{x\to\infty} h(x) = 0$.
- (C) If $\mu < \infty$ and $\lim_{x\to\infty} h(x) = 0$, then

$$\lim_{x\to\infty}p(x)\,=\,(1/\mu)\,\int_0^\infty\,h(x)\;dx.$$

(D) If
$$\mu = \infty$$
, $\lim_{x\to\infty} h(x) = 0$ and $\int_0^\infty h(x) dx < \infty$, then $\lim_{x\to\infty} p(x) = 0$.

Received March 3, 1961; in revised form, November 6, 1961. Research sponsored by the Office of Naval Research under Contract No. Nonr.-401(03).