## GENERATING FUNCTIONS FOR POWERS OF FIBONACCI NUMBERS

## By John Riordan

1. Introduction. The Fibonacci numbers, $f_{n}$, may be defined by $f_{0}=f_{1}=1$, $f_{n}=f_{n-1}+f_{n-2}, n=2,3, \cdots$. Their generating function is

$$
f_{1}(x)=\sum_{n=0}^{\infty} f_{n} x^{n}=\left(1-x-x^{2}\right)^{-1}
$$

The similar generating function for the $k$-th power of $f_{n}$ is defined as

$$
f_{k}(x)=\sum_{n=0}^{\infty} f_{n}^{k} x^{n}
$$

S. W. Golomb [2] (see also [1, 194, Example 32]) has found effectively that

$$
\left(1-2 x-2 x^{2}+x^{3}\right) f_{2}(x)=1-x
$$

and thus raised the question of the character of similar expressions for $k=$ $3,4, \cdots$. A short proof of this expression is as follows. First, it is familiar that

$$
f_{n}^{2}-f_{n-1} f_{n+1}=(-1)^{n}, \quad n=0,1,2, \cdots
$$

Then

$$
\begin{aligned}
f_{n}^{2} & =\left(f_{n-1}+f_{n-2}\right)^{2} \\
& =f_{n-1}^{2}+f_{n-2}^{2}+2\left(f_{n}-f_{n-2}\right) f_{n-2} \\
& =f_{n-1}^{2}-f_{n-2}^{2}+2\left(f_{n-1}^{2}+(-1)^{n}\right)
\end{aligned}
$$

or

$$
f_{n}^{2}-3 f_{n-1}^{2}+f_{n-2}^{2}=2(-1)^{n}, \quad n=1,2, \cdots
$$

while $f_{0}^{2}=1$. Hence

$$
\left(1-3 x+x^{2}\right) f_{2}(x)=1-2 x f_{0}(-x)
$$

where $(1-x) f_{0}(x)=1$. Simplifying leads to Golomb's result.
In similar fashion it is found that

$$
\begin{array}{ll}
f_{n}^{3}-4 f_{n-1}^{3}-f_{n-2}^{3}=3(-1)^{n} f_{n-1}, & n=1,2, \cdots \\
f_{n}^{4}-7 f_{n-1}^{4}+f_{n-2}^{4}=8(-1)^{n} f_{n-1}^{2}+2, & n=1,2, \cdots
\end{array}
$$

which correspond to the generating function relations

$$
\begin{aligned}
& \left(1-4 x-x^{2}\right) f_{3}(x)=1-3 x f_{1}(-x) \\
& \left(1-7 x+x^{2}\right) f_{4}(x)=1-8 x f_{2}(-x)+2 x f_{0}(x)
\end{aligned}
$$

Received May 5, 1961.

