THE VANISHING OF THE HOMOGENEOUS PRODUCT SUM ON THREE LETTERS

By Morgan Ward

1. Statement of result. By the homogeneous product sum $H_{n}=H_{n}(x, y, z)$ on three letters x, y and z we understand the sum of all the symmetric functions of x, y and z of weight n. Thus $H_{1}=x+y+z, H_{2}=x^{2}+y^{2}+z^{2}+x y+$ $y z+z x, H_{3}=x^{3}+y^{3}+z^{3}+x^{2} y+x^{2} z+y^{2} x+y^{2} z+z^{2} x+z^{2} y+x y z$ and so on. It is an important question in the theory of integral cubic recurrences to decide whether the Diophantine equation $H_{n}=0, n>1$, can have non-trivial solutions. (Ward [1], [3]). In a recent paper in this journal (Ward [2]) referred to hereafter as D.P., it was shown that this can happen only when n is odd. It was also proved by descent that $H_{3}=0$ has only trivial solutions. I prove here the following generalization.

Theorem 1.1. The Diophantine equation

$$
\begin{equation*}
H_{n}(x, y, z)=0 \tag{1}
\end{equation*}
$$

has only trivial solutions whenever $n+2$ is a prime number greater than three.
This result makes the conjecture that (1.1) has only trivial solutions for all values of n greater than one considerably more plausible (Ward [1]). The remainder of this paper is devoted to a proof by contradiction of Theorem 1.1.
2. Preliminary reductions. Throughout the remainder of this paper, p denotes a fixed prime greater than three. By a trivial solution of (1.1) we understood one in which $x y z=0$. Assume that there exists a non-trivial solution $x=a, y=b, z=c$. Then from results given in D.P. we are entitled to assume

$$
\begin{gather*}
H_{n}(a, b, c)=0, \quad n+2=p>3 . \tag{2.1}\\
\quad a b c \neq 0 . \tag{2.2}\\
(a, b)=(b, c)=(c, a)=1 . \tag{2.3}
\end{gather*}
$$

We shall deduce a contradiction from these assumptions.
3. We begin with some simple lemmas.

Lemma 3.1. Under the hypotheses of §2, there exist two co-prime non-zero integers N and M such that

$$
\begin{gather*}
\frac{a^{p}-b^{p}}{a-b}=\frac{b^{p}-c^{p}}{b-c}=\frac{c^{p}-a^{p}}{c-a}=N . \tag{3.1}\\
a b\left(\frac{a^{p-1}-b^{p-1}}{a-b}\right)=b c\left(\frac{b^{p-1}-c^{p-1}}{b-c}\right)=c a\left(\frac{\left(c^{p-1}-a^{p-1}\right.}{c-a}\right)=M . \tag{3.2}
\end{gather*}
$$

Received February 15, 1960.

