THE EQUATION iat = b IN A QUATERNION ALGEBRA
By BAarTH PoLLAK

Introduction. The quaternion equation fat = b has been studied by O’Connor
and Pall [5], [7] for the case of classical (Hamilton) quaternion algebras over
rational p—adic fields. Here ¢ and b are non-zero quaternions having zero
trace and non-zero norm. They obtained necessary and sufficient conditions
for solvability of the equation. They also found that if p > 2, then the equation
may not be solvable for some quaternion . However, if it is solvable, then
there exist solutions ¢t with Nt assuming either of the two values permitted
by the norm condition, Nb = (N#)’Na. However, for p = 2 it was found that
the equation was always solvable (provided, of course, that ¢ and b satisfy
the above norm condition). However, Nt in this case was invariant. Since the
classical quaternion algebra splits over odd p—adic fields and is a division
algebra over the 2—adic field, Pall has made the following natural conjecture.
Let @ be a quaternion algebra over the rationals and @), its scalar extension
over the rational p—adic field. If @, splits and the equation {at = b is solvable,
Nt assumes both values permitted by the norm condition. If @, does not split,
the equation is always solvable but in this case N? is invariant. In our investi-
gation we give necessary and sufficient conditions for the solvability of lat = b
for any quaternion algebra over an arbitrary ground field of characteristic 2.
We also derive a result which, when k is specialized to a local field, gives Pall’s
conjecture. Iinally, we treat analogous questions for a maximal order M
within a quaternion algebra.

1. Notations. In this paper k will denote a field of characteristic 2, k*
the multiplicative group of non-zero elements of k. Elements of & will be
denoted by small case Greek letters. @ will denote a quaternion algebra over k.
Thus @ is a 4-dimensional associative algebra over k with basis 1, 7, , 1, , 73 = %%, ,
and the multiplication table is 9} = a, 495 = 8, %19, = —1st; . TFor uniformity
of notation we will sometimes denote 1 by %, . It will be convenient to adopt
the notation («, 8) for . Elements of @ will be denoted by small case Latin
letters. There is an anti-automorphism of period two called conjugation in Q.
Thus, if ¢ = &3 + &2, + E2, + E25 , then &, the conjugate of z, is given by
T = &gty — £i1y — £l — £573 . The quantities x + & and « are scalar multiples
of 7, , and in this sense we say they lie in k (by making the natural identification).
They are called, respectively, the frace and norm of x and are denoted by Sz
and Nz. If Sz = 0, z is called pure.
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