MEASURES INDUCED ON A σ -ALGEBRA BY A SURFACE

By L. H. TURNER

1. Introduction. Let (T, A) be a c.BV mapping (continuous and of bounded variation; i.e., a continuous surface of finite area) from any admissible set $A \subset E_2$ into E_3 , p = T(w), $p = (x, y, z) \in E_3$, $w = (u, v) \in A$. (See [2] for all definitions.) For every point $p \in T(A)$ consider the components g of $T^{-1}(p) \subset A$. Let $\Gamma = \Gamma(A)$ be the collection of all such components $g \subset A$ as p varies over T(A). The components are continua if A is compact. Let \mathfrak{B}_0 be the class of all sets which are Borel measurable and are unions of components $g \in \Gamma$. Then \mathfrak{B}_0 is a σ -algebra since A is Borel measurable. Let \mathfrak{G}_0 be the class of all sets $G \in \mathfrak{B}_0$ which are open in A. In particular every set $G \in \mathfrak{G}_0$ is admissible. When A is compact, L. Cesari has defined, in [1] and [2], functions on \mathfrak{B}_0 as follows:

$$\varphi(K) = \inf \{ V(T, G) : G \supset K, G \in \mathcal{G}_0 \},$$

$$\varphi_r(K) = \inf \{ V(T_r, G) : G \supset K, G \in \mathcal{G}_0 \},$$

$$\varphi_r^+(K) = \inf \{ V^+(T_r, G) : G \supset K, G \in \mathcal{G}_0 \},$$

$$\varphi_r^-(K) = \inf \{ V^-(T_r, G) : G \supset K, G \in \mathcal{G}_0 \},$$

for r = 1, 2, 3, where K is any set of \mathfrak{B}_0 . He has also defined $d_r(K) = \varphi_r^+(K) - \varphi_r^-(K)$. This will be denoted by $\mathfrak{V}_r(K)$ in the present paper. We will also use these definitions even when A is not compact.

Among other results, the following theorem has been proved by Cesari in [1] and is given here in the terminology of P. Halmos [3]. This terminology will be used throughout this paper.

THEOREM 1. Let (T, A) be a c.BV mapping from the compact admissible set A. Then the functions φ , φ_r , φ_r^+ , φ_r^- are regular measures on (A, \mathfrak{B}_0) . The functions \mathfrak{V}_r are signed measures on (A, \mathfrak{B}_0) . Moreover $\varphi(G) = V(T, G)$ for every set $G \mathfrak{e} \mathfrak{S}_0$ and similarly for φ_r , φ_r^+ , φ_r^- , V_r .

Let us note that $\varphi_r(K) = \varphi_r^+(K) + \varphi_r^-(K)$ for every $K \in \mathfrak{B}_0$, under the hypotheses of Theorem 1. This may be seen by observing that if $\{G_n\}$, $\{M_n\}$, $\{N_n\}$ are sequences of sets in \mathcal{G}_0 all containing K such that $\varphi_r(K) = \lim V(T, \mathcal{G}_n)$, $\varphi_r^+(K) = \lim V^+(T_r, \mathcal{M}_n) \varphi_r^-(K) = \lim V^-(T_r, \mathcal{N}_n)$, then $\varphi_r(K) = \lim V(T_r, \mathcal{G}_n\mathcal{M}_n\mathcal{N}_n) = \lim V^+(T_r, \mathcal{G}_n\mathcal{M}_n\mathcal{N}_n) + \lim V^-(T_r, \mathcal{G}_n\mathcal{M}_n\mathcal{N}_n) = \varphi_r^+(K) + \varphi_r^-(K)$, since $V(T_r, \mathcal{G}) = V^+(T_r, \mathcal{G}) + V^-(T_r, \mathcal{G})$ for every admissible set \mathcal{G} .

Let (T, A) be any c.BV mapping from any admissible set A. Let $\Gamma(A)$ be as above. Let $\Gamma^{\circ}(A)$ be the class of all $g \in \Gamma(A)$ such that g is compact and $g \subset A^{\circ}$, where A° is the interior of A. Let \hat{A} be the union of all $g \in \Gamma^{\circ}(A)$. The set \hat{A} is open in E_2 (see [2; 221]). The purpose of the present paper is to prove:

Received April 26, 1958. This research was supported by OSR contract AF 18(600)-1484.