POLYNOMIAL COCYCLES

By R. Heaton and G. Whaples

1. Introduction. Let A be any additive group. Consider A as acting simply on itself; then according to the original formulation of cohomology of finite groups by S. Eilenberg and S. MacLane [2], one defines for every function f of n variables in A into A, a function δf, of $n+1$ variables in A into A, by the formula

$$
\begin{align*}
& (\delta f)\left(x_{1}, x_{2}, \cdots, x_{n+1}\right)=f\left(x_{2}, \cdots, x_{n+1}\right) \\
& +\sum_{v=1}^{n}(-1)^{\nu} f\left(x_{1}, \cdots, x_{\nu}+x_{\nu+1}, x_{v+2}, \cdots, x_{n+1}\right) \tag{1}\\
& + \\
& +(-1)^{n+1} f\left(x_{1}, \cdots, x_{n}\right) .
\end{align*}
$$

A function f is called a cocycle if δf is 0 , and a coboundary if $f=\delta g$ for some function g. If A is the additive group of a field, one may ask what cocyclefunctions are expressible by polynomials. More precisely, let k be any field. For each $n>1$, call a polynomial $f\left(x_{1}, \cdots, x_{n}\right)$ a polynomial n-cocycle if the polynomial $\delta f\left(x_{1}, \cdots, x_{n+1}\right)$, defined by (1), is identically zero; call it a polynomial n-coboundary if it is identically $(\delta g)\left(x_{1}, \cdots, x_{n}\right)$ for some polynomial g, with cofficients in k, in x_{1}, \cdots, x_{n-1}. From now on we shall consider only polynomial cocycle and coboundaries, and shall omit the word "polynomial". Clearly every coboundary is a cocycle; we want to find whether there are any others.

Besides its interest as a problem of elementary algebra, this is worth studing for the following reasons: The 1-cocycles are precisely the additive polynomials, which have been shown to have an interesting theory [1], [5], [6]. The Wittvector formalism [9] represents the additive group of a p-adic integral domain by a chain of group extensions by the additive group of its residue class field; the essential point is that the 2-cocycles describing these group extensions can be defined by polynomials. In generalized local class field theory it has been found that polynomial functions are of great importance [7], [8]. For application to Witt-vectors and to local class field theory we would like to solve the much harder problem of determining all polynomial cocycles over an integral domain rather than over a field; our present problem represents progress toward this harder one.

2. Results.

Definition. In any field, an additive polynomial is an $f(x)$ satisfying the identity $f(x+y)-f(x)-f(y)=0$. From (1) it is clear that "additive poly-

