CONDITIONS ON THE REALIZATION OF PREDICTION BY MEASURES

By J. CHOVER

1. Introduction. Let x_i $(-\infty < t < \infty)$ be a second-order-stationary complex-valued stochastic process. For simplicity we shall suppose that the expectations $Ex_t \equiv 0$. The covariance function $\rho(t) = Ex_s \bar{x}_{s+t}$ has the spectral representation

(1)
$$\rho(t) = \int_{-\infty}^{\infty} e^{i\lambda t} dF(\lambda),$$

where F is a distribution function. We shall make the familiar regularity assumption

CONDITION A.

$$\int_{-\infty}^{\infty} \frac{|\ln S(\lambda)|}{1+\lambda^2} \, d\lambda < \infty \,,$$

where S indicates the derivative of F.

Given $\tau > 0$, it is known that there exists a random variable y_{τ} which minimizes the "prediction error"

(2)
$$\sqrt{E(x_{\tau}-y_{\tau})^2}$$

over the class of all limits in the mean (- square) of linear combinations of x_t with $t \leq 0$.

In discussing the prediction problem in [4], N. Wiener also posed the following question: When can y_{τ} be realized as

(3)
$$y_{\tau} = \int_{-\infty}^{0} x_s \, dm^{\tau}(s),$$

where m_{τ} is a bounded, complex (Radon) measure on the Borel sets of $-\infty < t \leq 0$? Wiener demonstrated this to be the case in several examples where $S(\lambda)$ is of the form $S(\lambda) = N(\lambda^2)/D(\lambda^2)$, where N and D are polynomials, D being of degree one greater than N; and he pointed out the impossibility of such a realization under certain other conditions. It is to be expected, of course, that any condition on S implying differentiability of the sample functions (in some sense) would contra-indicate the possibility that (3) give a minimum prediction error.

The general problem of such "realizability", however, was left open; especially so for the cases where $S(\lambda)$ is not a ratio of polynomials.

More recently, A. Beurling [1] has formulated a necessary condition for such

Received August 26, 1957; in revised form, November 14, 1957. The author is indebted to Professor Beurling for communicating some of his unpublished material on prediction theory.