THE TRANSFORMATION FORMULA FOR THE DEDEKIND MODULAR FUNCTION AND RELATED FUNCTIONAL EQUATIONS

By Shô Iseki

Introduction. The Dedekind modular function $\eta(\tau)$, defined by

$$
\eta(\tau)=e^{\pi i \tau / 12} \prod_{n=1}^{\infty}\left(1-e^{2 \pi i n \tau}\right) \quad(\Im(\tau)>0)
$$

plays an important role in the theory of elliptic modular functions, and is also closely connected with the generating function for $p(n)$, the number of unrestricted partitions of a positive integer n (see Rademacher [5]).

The celebrated transformation formula for $\eta(\tau)$, which is concerned with a modular substitution of τ, reads

$$
\begin{equation*}
\eta\left(\frac{a \tau+b}{c \tau+d}\right)=\epsilon\left(\frac{c \tau+d}{i}\right)^{\frac{1}{2}} \eta(\tau), \tag{1}
\end{equation*}
$$

where a, b, c and d are rational integers satisfying $a d-b c=1, c \geq 0$ (the case $c=0$ is rather trivial, and we shall assume $c>0$ in the following); the square root means the principal branch, and ϵ is a certain 24 th root of unity depending on a, b, c and d.

Actually, there exists a precise transformation formula for $\log \eta(\tau)$ which may be used to determine the exact value of ϵ in (1). (For a direct proof of (1) with an explicit form of ϵ, not depending on logarithms, see W. Fischer [2].)

We can write, since $a d-b c=1$,

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
H & -\frac{h H+1}{k} \\
k & -h
\end{array}\right]
$$

where h and $k(>0)$ are relatively prime integers and H is an integer such that $h H \equiv-1(\bmod k)$. Putting $(c \tau+d) / i=z(\Re(z)>0)$, we find that

$$
\tau=\frac{i z+h}{k}, \quad \frac{a \tau+b}{c \tau+d}=\frac{i / z+H}{k} .
$$

With these new characters the transformation formula for $\log \eta(\tau)$ is written in the form

$$
\begin{align*}
\sum_{n=1}^{\infty} \lambda\left(\frac{n}{k}(z-i h)\right)+\frac{\pi}{12 k}(z & \left.-\frac{1}{z}\right) \tag{2}\\
& =\sum_{n=1}^{\infty} \lambda\left(\frac{n}{k}\left(\frac{1}{z}-i H\right)\right)+\frac{1}{2} \log z+\pi i s(h, k)
\end{align*}
$$

Received September 20, 1956; in revised form, July 17, 1957.

