DEFINITE DIVERGENCE OF THE CONJUGATE FOURIER SERIES

By Basudeo Singh

1. Let

(1.1)
$$\sum_{n=1}^{\infty} (b_n \cos nx - a_n \sin nx)$$

be the conjugate series of the Fourier series corresponding to the function f(x) which is integrable in the sense of Lebesgue over the interval $(-\pi, \pi)$ and is defined outside this interval by periodicity. The conjugate function associated with the above conjugate series is

(1.2)
$$g(x) = \frac{1}{2\pi} \lim_{t \to 0} \int_{t}^{\pi} \psi(t) \cot \frac{t}{2} dt,$$

where

$$\psi(t) = f(x+t) - f(x-t).$$

Prasad [3] has shown that if at a point x, the integral (1.2) diverges to $+\infty$ or to $-\infty$, the Abel limit of (1.1) will also diverge to the same value.

Moursund [2] has proved that if at a point x,

$$\int_0^t | \psi(u) | du = O(t),$$

the divergence of g(x) to $+\infty(-\infty)$ is a necessary and sufficient condition for the divergence of (1.1) to $+\infty(-\infty)$ when summed by Riesz's equivalent of the Cesàro method (C, δ) with $\delta > 0$.

Anderson [1] has shown that at a point x where

$$\int_{t}^{\delta} \left| \frac{\psi(t)}{t} - \frac{\psi(t+2\epsilon)}{t+2\epsilon} \right| dt = O(1),$$

as $\epsilon \to 0$, where δ is a positive constant, the definite divergence to $+\infty(-\infty)$ of the integral (1.2) is a necessary and sufficient condition for the definite divergence of the series (1.1) to $+\infty(-\infty)$. The object of this note is to prove the following theorem:

THEOREM. At a point x where

(1.3)
$$\Psi(t) = \int_{0}^{t} \psi(u) \ du = O(t)$$

(1.4)
$$\int_{\epsilon}^{\delta} \frac{|\psi(t+\epsilon) - \psi(t)|}{t} dt = O(1)$$

Received February 27, 1957. The author is indebted to Dr. M. L. Misra for his kind interest and advice in the preparation of this paper.