OSCILLATORY SOLUTIONS OF NONLINEAR AUTONOMOUS DIFFERENTIAL EQUATIONS OF ORDER HIGHER THAN TWO

By Avner Friedman

Introduction. Consider the nonlinear autonomous differential equation of the second order
(a)

$$
\ddot{x}+f(x) \dot{x}+h(x)=0 .
$$

It can be written as a system,

$$
\begin{equation*}
\dot{x}=y, \quad \dot{y}=-f(x) y-h(x) . \tag{b}
\end{equation*}
$$

Assume that the origin is the only critical point of the system, and that it is negatively asymptotically stable, that is,

$$
x h(x)>0(x \neq 0), \quad f(0)<0
$$

If $x(t)(t \geq 0)$ is a bounded solution of (a) such that $\dot{x}(t)$ is also bounded, then $(x(t), y(t))$, where $y(t)=\dot{x}(t)$, is a bounded solution of (b), and from the general theory of Bendixon-Poincaré it follows that this solution must spiral asymptotically toward a periodic solution of (b). Since every periodic solution contains critical points, it follows that the solution $x(t)$ is oscillatory, that is, it has an infinite number of zeros.

Equation (a) is a special case of the n-th order differential equation
(c) $\quad \frac{d^{n} x}{d t^{n}}+\frac{d^{n-1} G_{1}(x)}{d t^{n-1}}+\frac{d^{n-2} G_{2}(x)}{d t^{n-2}}+\cdots+\frac{d G_{n-1}(x)}{d t}+G_{n}(x)=0$.

In this paper we shall prove that under certain assumptions on the $G_{i}(x)$, every solution of (c) which is bounded together with its first $n-1$ derivatives, is oscillatory. We shall give the proof only for the case $n=3$, and then state the general theorem.

1. The equation to be first considered is

$$
\begin{equation*}
\dddot{x}+g(x) \ddot{x}+g^{\prime}(x) \dot{x}^{2}+f(x) \dot{x}+h(x)=0 . \tag{1}
\end{equation*}
$$

A solution $x(t)(0 \leq t<\infty)$ of (1) is said to be strongly bounded if $x(t), \dot{x}(t)$ and $\ddot{x}(t)$ are bounded. Clearly, if the assumption 1) of Theorem 1 below is satisfied, then equation (1) is equivalent to the system

$$
\begin{align*}
& \dot{x}=y-G(x) \\
& \dot{y}=z-F(x) \tag{2}\\
& \dot{z}=-h(x),
\end{align*}
$$

Received October 25, 1956; in revised form, July 5, 1957.

