SEMI-SPECIAL PERMUTATIONS II: SEMI-SPECIAL PERMUTATIONS ON $\left[p^{\alpha}\right]$

By K. R. Yacoub

In my paper [1], on semi-special permutations I, I have obtained necessary and sufficient conditions for the existence of non-linear semi-special permutations on $[n]$. (The symbol $[n]$ is used to denote the set of numbers $1,2, \cdots, n$.)I have also obtained such permutations on $[2 p],\left[p^{2}\right]$ and $[p q]$ when p and q are odd primes.

In the present note, I proceed further to obtain the non-linear semi-special permutations on $\left[p^{\alpha}\right]$ when p is an odd prime and $\alpha>1$. (If p is an odd prime, the semi-special permutations on $[p$] are all linear [2, Corollary 4.13].) The note is self contained, since I shall state explicitly the requisite definitions and theorems. These are discussed in greater detail in [1] and [2].

1. Definitions and general results.

Definition 1. A permutation π defined on $[n]$ is said to be semi-special if $\pi n=n$ and if, for every $y \varepsilon[n]$

$$
\pi_{\nu} x \equiv \pi(x+y)-\pi y \quad(\bmod n)
$$

is again a permutation, namely a power (depending on y) of π.
Definition 2. The permutation π defined by $\pi x \equiv t x(\bmod n)$, where t is some number prime to n, is called a linear permutation.

From this definition, it follows that every linear permutation is semi-special, but the converse is not true. It is, however, interesting to determine the semispecial permutations on $[n]$ which are not linear. This is the main object of the present note when $n=p^{\alpha}$ and p is an odd prime.

Theorem 1. Let $n>2$; then to every semi-special permutation defined on $[n]$ there exists an integer r which divides n such that $1 \leq r<n$ and $\pi_{r}=\pi[2$, Theorem 4.12].

Theorem 2. To every semi-special permutation defined on [n], there corresponds a number s which divides n such that the permutation induced mod s is linear [1, Theorem 2.1].

The above two theorems combine to give the principal result.
Conclusion. The totality of semi-special permutations on $[n]$ (for a given $n)$ which are not linear can be obtained in the following manner:
(i) choose a proper divisor of n, call this r, say;

Received December 21, 1956.

