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1. The equation in its simplest form is written

(1.1) F(x) Jo k(x- y)F(y) dy, x > O,

where /(x) is a known function. The present study is motivated by results
concerning a certain probability model (the maximum of successive partial
sums of identically distributed independent random variables), which can
be found in [11]. Therefore k(x) is taken to be a probability density, while
the solution of (1.1) which is of interest in this context must be a distribution
function, and we shall so restrict what we call a solution. To be precise we
shall say that F(x) is a P-solution (P for probability) or a P*-solution if it
satisfies respectively conditions
(P) F(x) is non-decreasing and continuous on the right, F(x) 0 for x < 0

and limx_ F(x) 1, or
(P*) F(x) is non-decreasing and continuous on the right, F(x) 0 for x < 0

and F(x) does not vanish everywhere.
As an example of well known results concerning P-solutions we mention

THEOREM 1. Let (x) be a probability density with finite first moment, i.e.

k(x) >_0, f/k(x) dx 1, f_ x k(x) dx <

Then equation (1.1) has either a unique P-solution or no P-solution at all, according
as f_ xk(x) dx < 0 or >_ O.

This result was obtained by D. V. Lindley [7], as an application of the strong
law of large numbers. It implies a theorem in the theory of the one server
queue which states that such a queue is ergodic if the expected interarrival
time exceeds the expected service time. The solution F(x) is then the limiting
distribution of the waiting time of the n-th customer. A generalization of
Theorem 1 to the case of the n-server queue was obtained by Kiefer and Wolfowitz
[6], which involves more complicated equations than (1.1).
Our aim, in 2, is to find a condition on k(x) which is both necessary and

sufficient for a unique P-solution to exist, without assuming that ](x) has a
finite first moment. (A queue may be ergodic even if all moments are infinite.)
This condition is given in Theorem 2, for a somewhat more general equation
than (1.1). The proof, and the theory in later sections, makes essential use of
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