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1. Introduction. A function f(x) defined in (a, b) is completely convex if it
possesses derivatives of all orders and

(1) f(4)(x) > O, f(4+)(x) < O, a <_. x <_ b, k 0,1,2,...

This term. was introduced by Widder who proved the following result [4].

THEOREM (Widder). If f(x) is completely convex in an interval (a, b), it is
an entire function of exponential type.

This result was extended considerably by Boas and PSlya [2] who examined
the analytic character of functions as influenced by an alternation in signs of
sequences of derivatives.

It is the purpose of this paper to extend Widder’s theorem in a somewhat
different direction. A function f(x) defined in an interval (a, b) is almost com-
pletely convex if it possesses derivatives of all orders and

(2) f(*)(x) > O, a <_ x <_ b

7" C4k) fC4k)f(’/"(a) + f(+’(b) <.... (b a) If (a) -{-- (b)], k 0,1,2, ....
Examples of completely convex functions are sin x, 0 < x <_ r, and cos x,
r/2 g x _< r/2. The extensions of Boas and P61ya relax condition (1) so

that a sequence {n,} of derivatives is non-negative while an intermediate
sequence of the form {n A- 2ql of derivatives is non-positive. On the other
hand, condition (2) above assumes that the derivatives of order 4k -4- 2 at the
end points satisfy certain growth conditions. It may happen that all derivatives
of a function are non-negative throughout (a, b), and the function still is almost
completely convex. For example ec*, 0 <_ x < 1, 0 < c < r, is such a function.

In 2 the following theorem is established.

THEOREM 1. [f f(x) is almost completely convex in an interval (a, b), it is
an entire function of exponential type at most /(b a).

An elementary proof of Widder’s theorem was given by Boas [1]. The proof
of Theorem 1 is obtained by an extension of the technique employed in Boas’
proof.

In 3 it is shown how the notion of completely convex function can be ex-
tended to the case of more than one independent variable.
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