ASYMPTOTIC DEVELOPMENT OF THE SOLUTION
OF DIRICHLET’S PROBLEM AT ANALYTIC CORNERS

By Worrcang Wasow

1. Introduction. In the study of certain problems of numerical analysis
(cf. [3], [8]) one is led naturally to ask how the solutions of boundary value
problems for partial differential equations behave as one approaches a boundary
point where the boundary curves or the boundary values have a corner, i.e. a
jump in the first derivative. In particular, one would like to know the order of
magnitude of the various partial derivatives of the solution. The purpose of
this article is to show that in the case of the ordinary Dirichlet problem for
Laplace’s equation in two dimensions, and for piecewise analytic boundary
data, this question can be answered by an adaptation of techniques introduced
by H. Lewy [7] and developed further by R. S. Lehman [4], [5]. These methods
lead to infinite series of asymptotic character for the quantities in question.

Let L, and L, be two analytic arcs in the z-plane, i.e. two arcs that can be
represented parametrically by two analytic functions  + 7y = 2z = x;(s),
J = 1, 2, which are, respectively, holomorphic in the closed intervals of the
real s-axis that correspond to the two arcs. If x/(s) # O in those intervals,
which will be assumed to be the case, we may stipulate, without loss of generality,
that | s | is the arc length. We assume further that L, and L, have one endpoint
P in common, but no other point. We may choose the parameter s in such a
way that L, corresponds to an interval s; < s < 0and L, to an interval 0 < s <
8, . It will also be assumed that P is at the origin z = 0.

Let u(z, y) be a harmonic function in a simply connected region S bounded
by L, , L, and by an arc L; joining the points x,(s;) and x.(s,). Let it be further
assumed that u is continuous on L, + L, and that its values on L, and L, are,
respectively, holomorphic functions ¢,(s), ¢,(s) of s. We intend to study the
asymptotic behavior of u and of its derivatives near the corner P under the
assumption that this point is not a convex cusp, i.e. that the two curves form
at P an interior angle ar with 0 < a < 2. Let the arcs be labeled so that the
tangent to L, at P goes into the tangent to L, at P by a positive rotation through
the angle ar.

2. Properties of certain asymptotic series. We shall make extensive use of
elementary properties of certain generalized asymptotic series representations
that have been introduced in [7], [4] and [5]. The proofs of most of these proper-
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