MOEBIUS INVERSION OF FOURIER TRANSFORMS

BY RICHARD R. GOLDBERG AND RICHARD S. VARGA

Introduction. The classical inversion of

(*)
$$F(t) = \int_0^\infty \phi(u) \, \cos tu \, du$$

 \mathbf{is}

$$\phi(t) = \frac{2}{\pi} \int_0^\infty F(u) \cos tu \, du.$$

In this paper we present a method of inverting (*) which uses no integration whatsoever. The method consists of an application of the Moebius inversion formula combined with a variation of the classical Poisson formula from Fourier analysis. The main result is contained in Theorem 3. (Added in proof. It has been called to our attention that a similar result was announced by R. J. Duffin in the Bulletin of the American Mathematical Society, vol. 47(1941), p. 383.)

THEOREM 3. If 1. $\phi(u)$ of bounded variation on $(0 \le u \le R)$ for every R > 0,

2.
$$\int_{1}^{\infty} |\phi(u)| \log u \, du < \infty, \text{ and}$$

3.
$$F(t) = \int_{0}^{\infty} \phi(u) \cos tu \, du,$$

$$G(t) = \frac{1}{t} \left[\frac{F(0)}{2} + \sum_{k=1}^{\infty} (-1)^{k} F\left(\frac{k\pi}{t}\right) \right]$$

is finite almost everywhere $(0 < t < \infty)$ and

B.
$$\phi(t) = \sum_{n=1}^{\infty} \mu_{2n-1} G[(2n-1)t]$$

almost everywhere $(0 < t < \infty)$.

Here the $\{\mu_n\}$ are the Moebius numbers, defined in Example 1 of Section II.

I. Two lemmas on sums.

LEMMA 1. If 1.
$$\int_{R}^{\infty} |\phi(t)| dt < \infty$$
 for every $R > 0$,

then

then A.

 $n \qquad \qquad \sum_{k=1}^{\infty} \mid \phi(kt) \mid < \infty \quad almost \ everywhere \quad (0 < t < \infty).$

Received March 14, 1956.