THE SOLUTIONS OF A CLASS OF ORDINARY LINEAR DIFFERENTIAL
EQUATIONS OF THE THIRD ORDER IN A REGION CONTAINING
A MULTIPLE TURNING POINT

By Ruporru E. LANGER

1. Introduction. The object of this paper is a study of the solutions of the

differential equation
3 2,

A T D e 2 4 e ) = 0,
in a region about a so-called turning point. N is a complex parameter that is
unbounded in absolute value. The asymptotic forms of the solutions relative
to X are to be determined. The coefficient functions k;(z, A\); 7 = 1, 2, 3, are
taken to be expressible as power series in 1/\ with coefficients that are analytic
functions of z.

The characteristic or auxiliary algebraic equation associated with the differ-
ential equation (1.1) is

1.2 X+ halz, ®)x = 0.

The roots of this are distinct except at a point which is a zero of h,(2, ), where
they all coincide. Such a point of coincidence is called a turning point, or tran-
sition point. Because, in this instance, more than two roots coincide there, we
designate the turning point to be multple.

The description of the functional structure of the solutions of a differential
equation (1.1), as they depend upon ), is much more intricate when the z-region
considered includes a turning point than when it does not. In the presence of
a turning point the region cannot be dealt with as a whole. For near the turning
point the forms of the solutions are affected by the fact that the largeness of
| A | is, in a way, counteracted by the smallness of the coefficient k,(z, \). And
more remotely from the turning point the z-region must be sub-divided into
parts, in each of which separate descriptions of the solutions are requisite. In
each of these sub-regions certain solutions have exceptional forms. These must
be singled out, and their forms, not only in this sub-region, but in all others
too, must be determined.

Differential equations of the second order with turning points are important
in quantum mechanics and in other fields of applied mathematics. A consider-
able, but still incomplete, body of theory for such equations exists. For differ-
ential equations of orders higher than the second, existing theory is very
fragmentary. For equations of the third order the author has discussed the case
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