ON GENERAL DIRICHLET SERIES

By Donald Clayton Rose

1. A General Theorem. In this paper we shall be concerned with the analytic extension of functions defined by general Dirichlet series. The method employed was developed initially by Lindelöf [5] for use in the case of Taylor series. Cowling [3] has extended these results to ordinary Dirichlet series.

Let

$$
\mathfrak{f}(s)=\sum_{n=1}^{\infty} a_{n} e^{-\lambda_{n} s}
$$

be a general Dirichlet series with finite abscissa of convergence, σ_{c}. Here the sequence, $\left\{a_{n}\right\}$, consists of real or complex numbers, and $\left\{\lambda_{n}\right\}$ is an unbounded, monotonic, increasing sequence of real numbers. Let D be a simply-connected region in the (u, v) plane bounded by the rectifiable curves whose equations are $v=-\psi(u)$ and $v=\phi(u)$. These functions are defined for one of the two ranges for $u, u \geq A$ or $u \leq A$. We suppose that $\psi(u)$ and $\phi(u)$ are positive and bounded away from zero for $u>A+\epsilon$ or $u<A-\epsilon$ depending upon the range of u for which $\psi(u)$ or $\phi(u)$ are defined and $\epsilon>0$ is arbitrarily small. We suppose that A is positive and non-integral and a common zero of $\psi(u)$ and $\phi(u) . \quad D$ contains the real axis for all w for which $\operatorname{Re}[w]>A$. Suppose there exist functions $a(w)$ and $\lambda(w)$ analytic in and on the boundary of D with the possible exception of the point at infinity such that $a(n)=a_{n}$ and $\lambda(n)=\lambda_{n}$ for $n=$ $[A]+1,[A]+2, \cdots$, where $[x]$ means the greatest integer contained in x.

Let $\chi_{1}(w)=\left(e^{2 \pi i w}-1\right)^{-1}$ and $\chi_{2}(w)=\left(1-e^{-2 \pi i w}\right)^{-1}$. We note the following result. If $w=u+i v$ is bounded away from the integers then $\left|\chi_{1}(w)\right|$ and $\left|\chi_{2}(w)\right|$ are bounded $[4 ; 341]$, and if K is a suitable constant, then

$$
\left|\chi_{1}(w)\right|=\left|e^{-2 \pi i w}\right|\left|\chi_{2}(w)\right|=e^{2 \pi v}\left|\chi_{2}(w)\right|<K e^{2 \pi v}
$$

and

$$
\left|\chi_{2}(w)\right|=\left|e^{2 \pi i w}\right|\left|\chi_{1}(w)\right|=e^{-2 \pi v}\left|\chi_{1}(w)\right|<K e^{-2 \pi v} .
$$

We now consider the contour integrals

$$
\int_{\Gamma} \chi_{i}(w) a(w) e^{-s \lambda(w)} d w
$$

for $i=1,2$ where Γ is the closed path consisting of the three parts Γ_{1}, Γ_{2}, and $\Gamma_{3} . \quad \Gamma_{1}$ is the path $v=-\psi(u)$ from $w=A$ to $w=\rho_{1} C-i \psi\left(\rho_{1} C\right)$, where C is greater than A and bounded away from the integers in value. $\Gamma_{2}=\Gamma_{21}+$ $\Gamma_{22}+\Gamma_{23}$ where Γ_{21} is the (possibly null) line segment $v=-\psi\left(\rho_{1} C\right)$ from $\rho_{1} C-i \psi\left(\rho_{1} C\right)$ to $C-i \psi\left(\rho_{1} C\right), \Gamma_{22}$ is the line segment $u=C$ from $C-i \psi\left(\rho_{1} C\right)$

Received June 17, 1955. The author wishes to thank Professor V. F. Cowling for help in preparing this paper.

