SECTIONS IN PRINCIPAL FIBRE SPACES

By PAUL S. MOSTERT

Introduction. Let X be a Hausdorff topological space, and G a group of homeomorphisms of X onto itself. The group G is said to be a unisolvable, regular transformation group acting on the right of X if the following conditions are satisfied:

(i) The mapping $(x, g) \rightarrow g(x) = xg$ of $X \times G$ onto X is continuous;

(ii) $(xg_1)g_2 = x(g_1g_2), x \in X, g_1, g_2 \in G;$

(iii) x = xg if and only if g = e, the identity element of $G, x \in X$;

(iv) Let $D = \{(x, y) : y = xg\} \subset X \times X$, $x, y \in X$, $g \in G$. Then the mapping $(x, y) \to g$ of D onto G is continuous; (the conditions (iii) and (iv) constitute the unisolvability condition).

(v) Let B be the space of orbits of G. Then B is a Hausdorff space when given the identification topology. (This is the *regularity* condition for G).

Let p be the natural projection of X onto B. Then p is an open, continuous function [8]. The collection $\mathfrak{B} = \{X, B, p, G\}$ is called a *principal fibre space* [8; 3].

The principal fibre space \mathfrak{B} is said to have a *local cross section* if there is a neighborhood $U \subset B$ and a continuous function f mapping U into X such that pf(b) = b for $b \in U$. If U = B, then \mathfrak{B} is said to have a *(full) cross section*. A necessary and sufficient condition that a principal fibre space be a principal fibre bundle is that it have a local cross section defined for each $b \in B$ and some U_b containing b. (A proof of this last statement is given below for the sake of completeness. Although a proof is not contained in the literature, it is undoubtedly well-known). A necessary and sufficient condition that X be homeomorphic to $B \times G$ is that \mathfrak{B} have a full cross section.

It has long been known that if G is a Lie group acting on an analytic manifold, then local cross sections exist [4; 109–110]. In 1950, Gleason [7] proved that if G is a compact Lie group, and X is completely regular, then local cross sections exist. With only slight alterations, his proof can be extended to the case where G is a locally compact (i.e., arbitrary) Lie group. (Again, for the sake of completeness, and since a proof of this well-known and important result is not contained in the literature, a proof is given below). In the same year, using Gleason's (generalized) result, Serre [18] and Borel [3] proved that if G is a locally compact group, and B is locally contractible, locally compact, and paracompact, then local cross sections exist. Recently the author [14] demonstrated the existence of local cross sections when X is a separable, metric, locally compact group of finite dimension, and G is a closed subgroup of X.

Received April 28, 1955; revision received November 4, 1955. Presented to the American Society December 29, 1953, and September 2, 1954. This work was done under Contract N7-ONR-434, Task Order III, Navy Department, Office of Naval Research.