FINITE ABELIAN GROUPS WITH ISOMORPHIC GROUP ALGEBRAS

By W. E. Deskins

Introduction. If G is a group of order g and \mathfrak{F} is a field then it is possible to form, in a well-known fashion, an algebra $\mathfrak{A}(\mathfrak{G})$ of order g over \mathfrak{F} called the group algebra (or group ring) of G over \mathfrak{F} . At the Michigan Algebra Conference in the summer of 1947, R. M. Thrall proposed the following problem: Given the group G and the field \mathfrak{F} , determine all groups \mathfrak{K} such that $\mathfrak{A}(\mathfrak{K})$ is isomorphic with $\mathfrak{A}(\mathfrak{G})$ over \mathfrak{F} . Perlis and Walker [2] restated the problem: Given the groups G and \mathfrak{K} of order g, find all fields \mathfrak{F} such that $\mathfrak{A}(\mathfrak{K})$ is isomorphic with $\mathfrak{A}(\mathfrak{G})$ over \mathfrak{F} . They presented a complete solution of the problem for the case in which G is Abelian and \mathfrak{F} has characteristic 0 or a prime not dividing g. In this paper we shall complete the solution of the Abelian case by solving the problem when \mathfrak{F} has characteristic p which divides g.

The problem which arises when the characteristic of \mathfrak{F} divides the order of \mathfrak{G} is complicated by the fact that $\mathfrak{A}(\mathfrak{G})$ is no longer semisimple. Thus the methods of this paper differ sharply from those employed by Perlis and Walker who were working with direct sums of fields.

In Section 1 we shall exhibit some relations between subgroups of a group and certain ideals of its group ring, while in Section 2 we shall prove the key result (Theorem 2): If G is an Abelian *p*-group and \mathfrak{F} is of characteristic *p*, then $\mathfrak{A}(\mathfrak{K})$ is isomorphic with $\mathfrak{A}(\mathfrak{G})$ if and only if \mathfrak{K} is isomorphic with G. These results are combined in Section 3 with the results of Perlis and Walker to yield the solution to the Abelian portion of Thrall's problem.

1. Subgroups and Ideals. Let \mathcal{G} be a group of order g, \mathcal{F} be a field (of arbitrary characteristic), and \mathcal{K} be a subgroup of \mathcal{G} of order h consisting of elements $H_1 = 1, H_2, \dots, H_h$. Select q elements of $\mathcal{G}, Q_1, \dots, Q_q$, so that

$$G = Q_1 \mathfrak{K} + \cdots + Q_q \mathfrak{K} = \mathfrak{K} Q_1 + \cdots + \mathfrak{K} Q_q$$

where qh = g, and form the set L of the g - q elements $Q_i(H_i - 1)$, $i = 1, \dots, q$ and $j = 2, \dots, h$, of the group algebra $\mathfrak{A}(\mathfrak{G})$.

L is a set of linearly independent elements (over F) of A(G) since the g elements Q_iH_i, i = 1, ..., q and j = 1, ..., h form a basis for A(G).
(2) The elements of L form a basis for a left ideal & of A(G) since

$$G_nQ_i(H_i - 1) = Q_rH_m(H_i - 1) = Q_r(H_k - H_m) = Q_r(H_k - 1) - Q_r(H_m - 1).$$

We say that $\mathfrak{X} = \mathfrak{X}(\mathfrak{K})$ is the left ideal of $\mathfrak{A}(\mathfrak{G})$ associated with the subgroup \mathfrak{K} of \mathfrak{G} .

Received June 8, 1955; presented to the American Mathematical Society, December 28, 1954.