FINITE ABELIAN GROUPS WITH ISOMORPHIC GROUP ALGEBRAS

By W. E. Deskins

Introduction. If \mathcal{G} is a group of order g and \mathfrak{F} is a field then it is possible to form, in a well-known fashion, an algebra $\mathfrak{A}(\mathcal{G})$ of order g over \mathcal{F} called the group algebra (or group ring) of \mathcal{G} over \mathfrak{F}. At the Michigan Algebra Conference in the summer of 1947, R. M. Thrall proposed the following problem: Given the group \mathcal{G} and the field \mathfrak{F}, determine all groups \mathscr{K} such that $\mathfrak{H}(\mathscr{K})$ is isomorphic with $\mathfrak{H}(\mathcal{G})$ over \mathfrak{F}. Perlis and Walker [2] restated the problem: Given the groups \mathcal{G} and \mathcal{K} of order g, find all fields \mathcal{F} such that $\mathfrak{H}(\mathcal{K})$ is isomorphic with $\mathfrak{H}(\mathcal{G})$ over \mathfrak{F}. They presented a complete solution of the problem for the case in which \mathcal{G} is Abelian and \mathfrak{F} has characteristic 0 or a prime not dividing g. In this paper we shall complete the solution of the Abelian case by solving the problem when \mathfrak{F} has characteristic p which divides g.

The problem which arises when the characteristic of \mathcal{F} divides the order of \mathcal{G} is complicated by the fact that $\mathfrak{H}(\mathrm{g})$ is no longer semisimple. Thus the methods of this paper differ sharply from those employed by Perlis and Walker who were working with direct sums of fields.

In Section 1 we shall exhibit some relations between subgroups of a group and certain ideals of its group ring, while in Section 2 we shall prove the key result (Theorem 2): If \mathcal{G} is an Abelian p-group and \mathcal{F} is of characteristic p, then $\mathfrak{H}(\mathscr{K})$ is isomorphic with $\mathfrak{H}(\mathcal{G})$ if and only if \mathscr{K} is isomorphic with \mathcal{G}. These results are combined in Section 3 with the results of Perlis and Walker to yield the solution to the Abelian portion of Thrall's problem.

1. Subgroups and Ideals. Let \mathcal{G} be a group of order g, \mathcal{F} be a field (of arbitrary characteristic), and \mathcal{H} be a subgroup of \mathcal{G} of order h consisting of elements $H_{1}=1, H_{2}, \cdots, H_{h}$. Select q elements of $\mathcal{G}, Q_{1}, \cdots, Q_{\varphi}$, so that

$$
\mathcal{G}=Q_{1} \mathfrak{H}+\cdots+Q_{a} \mathfrak{H}=\mathfrak{H} Q_{1}+\cdots+\mathfrak{H} Q_{a}
$$

where $q h=g$, and form the set L of the $g-q$ elements $Q_{i}\left(H_{i}-1\right), i=1, \cdots$, q and $j=2, \cdots, h$, of the group algebra $\mathfrak{A}(\mathcal{G})$.
(1) L is a set of linearly independent elements (over \mathfrak{F}) of $\mathfrak{H}(\mathcal{G})$ since the g elements $Q_{i} H_{i}, i=1, \cdots, q$ and $j=1, \cdots, h$ form a basis for $A(G)$.
(2) The elements of L form a basis for a left ideal \mathbb{R} of $\mathfrak{Y}(\mathcal{G})$ since

$$
G_{n} Q_{i}\left(H_{i}-1\right)=Q_{r} H_{m}\left(H_{i}-1\right)=Q_{r}\left(H_{k}-H_{m}\right)=Q_{r}\left(H_{k}-1\right)-Q_{r}\left(H_{m}-1\right)
$$

We say that $\mathbb{R}=\mathfrak{R}(\mathfrak{H})$ is the left ideal of $\mathfrak{H}(\mathcal{G})$ associated with the subgroup $\mathfrak{H e}$ of G .

[^0]
[^0]: Received June 8, 1955; presented to the American Mathematical Society, December 28, 1954.

