ON THE COEFFICIENTS OF R-UNIVALENT FUNCTIONS

By Zeev Nehari

An analytic function $w=f(z)$ is univalent in a region B if its inverse $z=f^{-1}(w)$ is single-valued in the part of the w-plane covered by the image B^{\prime} of B. A natural generalization of the notion of univalence is obtained if the schlicht w-plane is replaced by a closed Riemann surface R. If B^{\prime} lies in R and $f^{-1}(w)$ is single-valued in the subset of R covered by B^{\prime}, we shall say-for want of a better term-that $f(z)$ is R-univalent in B. We may also describe this situation by saying that B^{\prime} is embedded in R.

The main objective of this note is to prove the following result on functions which are R-univalent in $|z|>1$.

Theorem: If S_{R} denotes the class of analytic functions $f(z)$ which map $|z|>1$ onto a domain embedded in a given closed Riemann surface R and which have the expansion

$$
\begin{equation*}
f(z)=z+a_{1} z^{-1}+a_{2} z^{-2}+\cdots \tag{1}
\end{equation*}
$$

near $z=\infty$, then the region of variability of the coefficient a_{1} within the class S_{R} is contained in a circle of radius 1.

Proof. Consider a simply-connected, smoothly-bounded domain D contained in R, and an Abelian integral $t(z)$ of the second kind with pure imaginary periods which has all its poles in D. We denote by C the boundary of D, and by $p(z)$ a real harmonic function which vanishes on C and is such that $p(z)-\sigma(z)$ is regular in D, where $\sigma(z)=\operatorname{Re}\{t(z)\}$. If we use the symbol

$$
(u, u)_{D}=\iint_{D}\left(u_{x}^{2}+u_{v}^{2}\right) d x d y
$$

we have, by Green's formula,

$$
\begin{aligned}
(p-\sigma, p-\sigma)_{D} & =\int_{C}(p-\sigma) \frac{\partial(p-\sigma)}{\partial n} d s=-\int_{C} \sigma \frac{\partial p}{\partial n} d s+\int_{C} \sigma \frac{\partial \sigma}{\partial n} d s \\
& =-\int_{C} \sigma \frac{\partial p}{\partial n} d s-(\sigma, \sigma)_{D}
\end{aligned}
$$

where \bar{D} is the complement of D with respect to R. Hence,

$$
-\int_{C} \sigma \frac{\partial p}{\partial n} d s=(p-\sigma, p-\sigma)_{D}+(\sigma, \sigma)_{\bar{D}}
$$

Received June 28, 1954. This research was supported by the United States Air Force, through the Office of Scientific Research of the Air Research and Development Command.

