ANOTHER PROOF OF THE PRIME NUMBER THEOREM

By Robert Breusch

This paper contains another derivation of the prime number theorem from Selberg's asymptotic formula (formula 5 below). For the following, p represents prime numbers, n positive integers, x, y, z positive real numbers, and $R \equiv R_{x}$ the interval $(\log x, x / \log x)$. As usual, $\vartheta(x)=\sum_{p \leq x} \log p$.

Used are the following well known and elementarily provable facts:

$$
\begin{equation*}
\sum_{y<n \leq z} 1 / n=\log (z / y)+O(1 / y) \tag{1}
\end{equation*}
$$

(2) The prime number theorem is equivalent to $\lim _{x \rightarrow \infty} \vartheta(x) / x=1$.

$$
\begin{equation*}
\vartheta(x)=O(x) . \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{p \leq x} \log p / p=\log x+O(1) \tag{4}
\end{equation*}
$$

and therefore

$$
\sum_{p \in R_{x}} \log p / p=\log x+o(\log x)
$$

because by (4) the contributions of the two omitted intervals are $O(\log \log x)$.

$$
\begin{equation*}
\vartheta(x) \log x+\sum_{p \leq x} \vartheta(x / p) \log p=2 x \log x+o(x \log x) \tag{5}
\end{equation*}
$$

[1; 305-306], and therefore

$$
\vartheta(x) \log x+\sum_{p \ell R_{x}} \vartheta(x / p) \log p=2 x \log x+o(x \log x)
$$

because by (3) and (4) the two omitted intervals contribute $O(x \log \log x)$.

$$
\begin{align*}
& \text { If } \overline{\lim } \vartheta(x) / x=A, \quad \text { and } \quad \underline{\lim } \vartheta(x) / x=a, \quad \text { then } \quad A+a=2 \tag{6}\\
& \text { [1]. } \\
& \vartheta(z)-\vartheta(y) \leq 2(z-y)+o(z) \tag{7}\\
& (y<z \leq 2 y) .
\end{align*}
$$

The last relation can be derived from (5) as follows: write (5) for z and for y; add in the second equation $\vartheta(y) \log (z / y)$ to the left member, and $2 y \log (z / y)$ to the right member. Both added terms are $O(y)$ because of (3), and because $z / y \leq 2$. Thus

$$
\begin{aligned}
& \vartheta(z) \log z+\sum_{1}=2 z \log z+o(z \log z) \\
& \vartheta(y) \log z+\sum_{2}=2 y \log z+o(z \log z)
\end{aligned}
$$

Now subtract, remember that $\sum_{2} \leq \sum_{1}$, and divide by $\log z$.
Received September 29, 1952.

