THE IMBEDDING OF A RING AS AN IDEAL IN ANOTHER RING

By R. E. Johnson

If R is a ring with unit element and if R is an ideal of a ring S, then $S = R \oplus R'$ where R' is the annihilator of R in S. Thus the ring R is an ideal of the ring S if and only if there exists a unique ring R' such that $S = R \oplus R'$. However, if the given ring R does not have a unit element, then the exact nature of a ring S containing R as an ideal is not so apparent. Some special cases of the general problem of determining all rings S containing a given ring R as an ideal are discussed in the first section of this paper.

The second section is concerned with the relationship between the ideal structures of a given ring R and any ring S containing R as an ideal. The principal theorem of this section exhibits a homomorphism of a set of weakly prime ideals of S onto the set of weakly prime ideals of R. Special instances of this result give the relationship between the prime ideal structures as well as the regular ideal structures of R and S.

1. Imbedding theorems. A ring R will be called *right faithful* if Ra = 0, $a \in R$, implies a = 0. Our conclusions that follow on right faithful rings obviously will hold also for left faithful rings.

The additive group R^+ of a ring R is made into an (R, R)-module in the usual way. Thus if we let a' be the element of R^+ corresponding to the element a of R, we have ab' = a'b = (ab)' for all $a, b \in R$.

Considering R^+ as a left R-module, let E(R) denote the ring of all endomorphisms of R^+ . Hence each $c \in E(R)$ is an endomorphism of R^+ such that a(b'c) = (ab')c for all $a, b \in R$. Evidently R may be considered as a subring of E(R) in case R is a right faithful ring.

1.1 Lemma. The right faithful ring R is a right ideal of E(R).

Proof. For each $a \in R$ and $c \in E(R)$, there exists $b \in R$ such that a'c = b'. Since x'(ac) = (xa')c = xb' = x'b for every $x' \in R^+$, we have ac = b. This proves 1.1.

A corollary of this lemma is that a'c = (ac)' for each $a \in R$, $c \in E(R)$. Consequently, if Rc = 0, $c \in E(R)$, then $R^+c = 0$ and c = 0. In other words, the right annihilator of R in E(R) is zero.

Let us designate the normalizer of R in E(R) by N(R). We recall that N(R) is the largest subring of E(R) in which R is an ideal.

1.2 THEOREM. If the ring R is an ideal of the ring S and if the right annihilator of R in S is zero, then S is isomorphic to a subring of N(R).

Received November 5, 1952.