# MODULAR CRITERIA ON RIEMANN SURFACES 

By Leo Sario

Introduction. In this paper, we establish criteria for the nonexistence of Green's functions and single-valued analytic functions with a finite Dirichlet integral on a given arbitrary Riemann surface.
In §1, it is proved that the surface is of parabolic type if and only if there exists an exhaustion with a divergent modular product. Existence of exhaustions with a convergent modular product is considered in §2. In §3, we derive connections of the above criterion with type criteria of Ahlfors [1], Laasonen [5] and Nevanlinna [6]. $\S 4$ contains a simplified proof of a modular criterion, introduced by the author in [8], for an $A D$-removable boundary.

The paper is a detailed exposition of results outlined in the preliminary notes [9], [11]. The sufficient type criterion introduced in [11] (Theorem 1 below), was proved by Noshiro [7] and Kuroda [3], [4] to be necessary as well. Heins [2] showed that the criterion is sufficient to guarantee even that the boundary be of harmonic dimension one.

1. Modular criterion for the parabolic type. Let $R$ be an arbitrary open Riemann surface and $\left\{R_{n}\right\}$ an exhaustion of $R$, each $R_{n}$ being bounded by a finite set $\beta_{n}$ of closed analytic Jordan curves with $\beta_{n} \cap \beta_{n+1}=0$. The difference $R_{n}-R_{n-1}$ consists of a finite number of subregions $E_{n i}$. Let $s_{n}$ be the harmonic function in $R_{n}-R_{n-1}$ with $s_{n}=0$ on $\beta_{n-1}, s_{n}=\log \sigma_{n}$ on $\beta_{n}$ where $\sigma_{n}$ ( $>1$ ) is a constant such that

$$
\begin{equation*}
\int_{\beta_{n}} d \bar{s}_{n}=2 \pi . \tag{1}
\end{equation*}
$$

Here, as everywhere in this paper, a barred letter stands for the conjugate harmonic function. The corresponding analytic function will be noted by a capital letter, $S_{n}=s_{n}+i \bar{s}_{n}$. If we cut each $E_{n i}$ along certain level lines $\bar{s}_{n}=$ a constant so as to form a planar domain, and select the arbitrary constants of $\bar{s}_{n}$ in the $E_{n i}$ properly, the function

$$
\begin{equation*}
F_{n}=e^{S_{n}} \tag{2}
\end{equation*}
$$

maps $R_{n}-R_{n-1}$ onto a circular annulus with radii 1 and $\sigma_{n}$, cut along radial slits. We say that

$$
\begin{equation*}
\sigma_{n}=\text { modulus of } R_{n}-R_{n-1} \tag{3}
\end{equation*}
$$

in the present exhaustion.
By definition, a Riemann surface $R$ is of parabolic type if there are no Green's

Received August 11, 1952.

