# PRODUCTS OF NORMAL OPERATORS 

By Irving Kaplansky

1. Introduction. In [5] Wiegmann proved the following interesting theorem: if $A$ and $B$ are matrices such that $A, B$, and $A B$ are all normal, then $B A$ is also normal. In [6] he extended this to completely continuous operators.

In the present note we shall look into the validity of this result for general operators on a Hilbert space. We hasten to inform the reader of the fact (surprising to the author) that the result may be false; an example is given in §5. On the positive side of the ledger we contribute the following: a reduction of the problem, a trace argument, and a generalization of the completely continuous case.
2. A reduction. The following theorem accomplishes a reduction of the problem from one of the fourth degree (the normality of $B A$ ) to one of the third degree.

Theorem 1. Let $A$ and $B$ be operators on Hilbert space such that $A$ and $A B$ are normal. Then the following statements are equivalent: (1) $B$ commutes with $A^{*} A$, (2) $B A$ is normal.

Proof. (1) $\rightarrow$ (2). Form the polar decomposition $A=U R$. Since $A$ is normal, $U$ is unitary, and $U$ and $R$ commute. Also $B$ commutes with $R$, the positive square root of $A^{*} A$. We have

$$
U^{*} A B U=U^{*} U R B U=B R U=B U R=B A
$$

Thus $B A$ is unitarily equivalent to a normal operator and so is itself normal.
(2) $\rightarrow$ (1). The theorem of Fuglede [2], as generalized by Putnam [3], states the following: if $P$ and $Q$ are normal and $P A=A Q$, then also $P^{*} A=A Q^{*}$. We apply this with $P=A B, Q=B A$. The conclusion is $B^{*} A^{*} A=A A^{*} B^{*}$. In view of the normality of $A$, this says that $B^{*}$ commutes with $A^{*} A$, and hence so does $B$.
3. A trace argument. With the aid of Theorem 1 we are able to give a trace argument for the normality of $B A$. It seems that such a trace argument will not work if one assaults the normality of $B A$ directly, instead of proving that $B$ commutes with $A^{*} A$.

In order not to tie ourselves down to any particular notion of trace, we formulate the theorem in terms of commutators (a commutator is an expression of the form $P Q-Q P$ ).

Theorem 2. Suppose $A, B$, and $A B$ are normal operators on Hilbert space, Received August 16, 1952.

