THE EVALUATION OF RAMANUJAN'S SUM AND GENERALIZATIONS

By Douglas R. Anderson and T. M. Apostol

1. Introduction. A large number of important arithmetical functions $F(k)$ are expressible in the form

$$
\begin{equation*}
F(k)=\sum_{d \mid \boldsymbol{k}} f(d) h(k / d) \tag{1}
\end{equation*}
$$

where $f(n)$ and $h(n)$ are arithmetical functions and the sum extends over the divisors of k. It is well-known that the function $F(k)$ will be multiplicative, that is to say $F(1)=1$ and $F(m n)=F(m) F(n)$ for $(m, n)=1$, whenever both $f(n)$ and $h(n)$ are multiplicative. In this paper we will discuss more general functions $S(n ; k)$ of two integral variables defined by sums of the form

$$
\begin{equation*}
S(n ; k)=\sum_{d \mid(n, k)} f(d) h(k / d) \tag{2}
\end{equation*}
$$

where now the summation extends over the divisors of the greatest common divisor (n, k) of n and k. When k divides n, the sums (2) specialize to those of the form (1). A famous example of a sum of type (2) is Ramanujan's sum $c_{k}(n)$ (see [3; 237]) which 'evaluates' the sum of the n-th powers of the primitive k-th roots of unity,

$$
\begin{equation*}
c_{k}(n)=\sum_{\substack{m \text { mod } k \\(m, k)=1}} \exp (2 \pi i n m / k)=\sum_{d \backslash(n, k)} d \mu(k / d), \tag{3}
\end{equation*}
$$

where $\mu(n)$ is the Möbius function and the sum over m is taken over any reduced residue system modulo k.

It is well-known that the sum in (3) is multiplicative in the variable $k, c_{k}(n)$ $c_{k^{\prime}}(n)=c_{k k^{\prime}}(n)$ if $\left(k, k^{\prime}\right)=1$. We will prove that the more general sums (2) are multiplicative in both variables, in the sense described in Theorem 1, provided that both $f(n)$ and $h(n)$ are multiplicative. From this it follows that such sums $S(n ; k)$ are determined completely in terms of the values obtained when n and k are powers of the same prime. In Theorem 2, suitable specialization of $f(n)$ and $h(n)$ leads to an evaluation of the sums $S(n ; k)$ in terms of more familiar functions of the form (1). In particular, this leads to an evaluation of Ramanujan's sum in terms of the Möbius function and Euler's ϕ-function. We then establish a connection between the sums $S(n ; k)$ and exponential sums, thus generalizing (3). Finally we discuss certain Dirichlet series whose coefficients involve the numbers $S(n ; k)$.
2. Multiplicative properties. The sums $S(n ; k)$ defined by (2) satisfy the following multiplicative property.

Received May 8, 1952.

