A CLASS OF MEROMORPHIC FUNCTIONS HAVING THE UNIT CIRCLE AS A NATURAL BOUNDARY

By W. J. Thron

The continued fractions
where α_{n} is a positive integer and $d_{n} \neq 0$ for all $n \geq 1$ were first investigated by Leighton and Scott [2]. If the sequences $\left\{d_{n}\right\}$ and $\left\{\alpha_{n}\right\}$ of the continued fraction (1) satisfy the conditions

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|d_{n}\right|^{1 / \alpha_{n}}=1 \quad \text { and } \quad \lim _{n \rightarrow \infty} \alpha_{n}=\infty \tag{2}
\end{equation*}
$$

then (see [1]) the continued fraction converges to a meromorphic function $f(z)$ for all $|z|<1$. Scott and Wall [4] were able to show that the function $f(z)$ defined by a continued fraction (1) has the circle $|z|=1$ as a natural boundary under rather restrictive conditions. Their results are special cases of the following more general theorem recently proved by the author [5]:

The function $f(z)$ represented by the continued fraction (1) has the circle $|z|=1$ as a natural bundary provided (1) satisfies in addition to (2) the conditions: $\alpha_{n} \geq \alpha_{n-1}$ for all $n \geq 1$ and the sequence $\left\{\alpha_{n}\right\}$ is such that there exists a sequence of positive integers $\left\{\mu_{k}\right\}$ with $\lim \mu_{k}=\infty$, with the property that for every k there exists an $n(k)$ such that μ_{k} divides α_{n} for all $n>n(k)$.

Using in part methods employed in [5], we establish here the following result.
Theorem. If the continued fraction (1) satisfies condition (2) and if in addition

$$
\varlimsup_{n \rightarrow \infty} \frac{h_{n}}{h_{n-1}}=\infty,
$$

where

$$
h_{n}=\sum_{k=1}^{n+1} \alpha_{k},
$$

then the function $f(z)$ to which (1) converges for $|z|<1$ has the circle $|z|=1$ as a natural boundary.

It is clear that this result neither contains nor is contained in the previous one. Both have their interesting aspects. The earlier theorem shows that the sequence $\left\{\alpha_{n}\right\}$ need not increase at a rapid rate, for example $\alpha_{n}=2^{[1 \log n]}$ clearly

Received June 3, 1952.

