UNIFORM COMPLETENESS OF SETS OF RECIPROCALS OF LINEAR FUNCTIONS

BY PASQUALE PORCELLI

1. Introduction. In §2 of this paper we give three conditions each of which is necessary and sufficient in order that the set K: $\{(1 + k_p x)^{-1}\}_{p=0}^{\infty} (k_p \neq 0, k_p \neq k_q \text{ if } p \neq q, \text{ and } k_p \notin [-\infty, -1] \}$ should be uniformly complete in F[0, 1](*i.e.*, each continuous function on [0, 1] can be uniformly approximated by linear combinations with numerical coefficients of terms of K). They are (i) the divergence of $\sum_{p=0}^{\infty} (1 - |x_p|)$, where $x_p = [(1 + k_p)^{1/2} - 1]/[(1 + k_p)^{1/2} + 1]$, (ii) if $\{a_p\}_{p=0}^{\infty}$ is a sequence of numbers, then the system of equations $a_p = \int_0^1 (1 + k_p x)^{-1} d\phi(x), p = 0, 1, 2, \cdots$, has at most one solution ϕ in BV[0, 1]("moment problem"), and (iii) the closed linear manifold generated by K in F[0, 1] should contain the function 1.

In §3 we add the condition that $|\arg(1 + k_p)| \leq \theta < \pi$, $|1 + k_p| \geq \delta > 0$, $p = 0, 1, 2, \cdots$, and prove that the divergence of the series $\sum_{p=0}^{\infty} |k_p|^{-1/2}$ is necessary and sufficient in order that K should be uniformly complete in F[0, 1]. Also, we show that if 0 < a < b and $K \subset F[0, b]$ then K is uniformly complete in F[a, b].

In the last section we show that in order for K to be uniformly complete in F[0, 1] it is necessary and sufficient that there should exist a function f in F[0, 1] such that the closed linear manifold generated by K in F[0, 1] contain some neighborhood of f. Also, we show that if K is not uniformly complete in F[0, 1], and if we enlarge K by the addition of a finite collection of elements of F[0, 1], then the resulting set is not uniformly complete in F[0, 1].

Szegö [5] proved that if $k_{p} \to 0$ as $p \to \infty$, then K is uniformly complete in F[0, 1], and Szasz [4] proved that if $k_{p} \to 0$ as $p \to \infty$, then the set $\{(1 + k_{p}x)^{m}\}_{p=0}^{\infty}$, where m is a number not a positive integer or 0, is uniformly complete in F[0, 1]. Recently van Herk [6] showed that if k_{p} is real and positive, $k_{p} < k_{p+1}$ for $p = 0, 1, 2, \cdots$, and $k_{p} \to \infty$ as $p \to \infty$, then the divergence of $\sum_{p=0}^{\infty} k_{p}^{-1/2}$ implies that the moment problem mentioned above (compare (ii)) has at most one solution ϕ in ND[0, 1].

2. Uniform completeness of K in F[0, 1]. Throughout this section, $\{k_p\}_{p=0}^{\infty}$ denotes a sequence of numbers, distinct from one another and from 0, none of which is a real number less than or equal to -1, and K denotes the sequence $\{(1 + k_p x)^{-1}\}_{p=0}^{\infty}$. If [a, b] is an interval, F[a, b] denotes the collection of all complex-valued continuous functions on [a, b], BV[a, b] the collection of all real-valued functions f of bounded variation on [a, b], such that f(a) = 0 and

Received August 18, 1952. Presented to the American Mathematical Society, September 5, 1952. This paper is based on a doctoral dissertation written under the direction of Professor H. S. Wall in the Department of Pure Mathematics of the University of Texas.