SPECIAL CONFORMAL MAPPINGS

By L. Fejér and G. Szegö

Introduction. The present paper deals with certain special conformal mappings $w=f(z)$ of the unit circle $|z| \leq 1$, in particular with the study of the curves corresponding to the circles $|z|=$ constant and to the radii arc $z=$ constant.
In Part 1 we compile a set of elementary formulas which are useful in this study.

Part 2 deals with a class of mappings which has been introduced by the first author $[4 ; 61]$. In what follows these mappings are referred to as "convex in the vertical direction".

In Part 3 we consider the Cesàro sums of order k of the geometric series:

$$
S_{n}^{(k)}(z)=\binom{n+k}{k}+\binom{n+k-1}{k} z+\binom{n+k-2}{k} z^{2}+\cdots+\binom{k}{k} z^{n}
$$

in particular the sums $S_{n}^{(1)}(z)$ and $S_{n}^{(3)}(z)$. The polynomials $S_{n}^{(3)}(z)$ might be called "tetrahedral polynomials" since the numbers

$$
\binom{3}{3},\binom{4}{3},\binom{5}{3}, \ldots
$$

are often called tetrahedral numbers [2; 4]. The sums $S_{n}^{(k)}(z)$ occur in the study of the power series whose coefficients are monotonic of a certain order $k+1$. The mapping $w=S_{n}^{(k)}(z)$ has been considered for various values of k. [See list of References.] In Part 3 some of these results are proved in a new way and refined by new results.

Part 1.

1. For the sake of completeness we point out a set of simple formulas; at least part of them will be used in the later discussion.

Let $z=x+i y=r e^{i \theta}, w=f(z)=u(r, \theta)+i v(r, \theta)$. We denote the derivatives of u and v with respect to θ by u^{\prime}, v^{\prime}, and with respect to r by \dot{u}, \dot{v}, respectively. We have then:

$$
\begin{equation*}
u+i v=f(z) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
u^{\prime}+i v^{\prime}=i z f^{\prime}(z) \tag{2}
\end{equation*}
$$

Received October 13, 1949; presented to the American Mathematical Society, September 1, 1949.

