CONVERGENCE FACTOR AND REGULARITY THEOREMS FOR CONVERGENT INTEGRALS

By S. T. PARKER

1. Introduction. The purpose of this study is the development of some of the relations and theorems for infinite integrals analogous to those obtained for infinite series by Moore [6]. In place of convergent series we consider functions f(t), Lebesgue integrable over (0, x) for every $0 \le x < \infty$, and for which the limit $\lim_{x\to\infty} \int_0^x f(t) dt$ exists. We shall write $\psi(x) = \int_0^x f(t) dt$, $\psi = \lim_{x\to\infty} \psi(x)$, and suppose that $|\psi(x)| \le A < \infty$, $x \ge 0$.

We shall investigate the properties possessed by "convergence factors" $\phi(t, \alpha)$, defined for $t \geq 0$ and α in some convenient set E having a limit point α_0 not of the set. In the work that follows, sets E_1 , E_2 , E_x , etc., are understood to be subsets of E, each containing all the points of E in a certain neighborhood of α_0 . The use of the "join" of two such subsets implies that the join is non-vacuous.

A function $z(t, \alpha)$ defined for t in an interval (a, b) and α in E will be said to converge boundedly as $\alpha \to \alpha_0$ provided that it converges to some limit as $\alpha \to \alpha_0$, and there is a neighborhood of α_0 such that $z(t, \alpha)$ is bounded for all t in (a, b) and all α in this neighborhood.

The factors $\phi(t, \alpha)$ must ensure successively the existence of the following:

(1.1)
$$\sigma(x, f, \alpha) = \int_0^x \phi(t, \alpha) f(t) dt \qquad (x \ge 0)$$

(1.2)
$$\sigma(f, \alpha) = \int_0^\infty \phi(t, \alpha) f(t) dt,$$

(1.3)
$$\sigma(f) = \lim_{\alpha \to \alpha_0} \sigma(f, \alpha).$$

Finally, we shall demand that ϕ be "regular"; that is, that $\sigma(f) = \psi$.

We consider also the problem of convergence factors $\theta(t, \alpha)$, defined like the $\phi(t, \alpha)$ above, such that

(1.4)
$$\lim_{\alpha \to \alpha_0} \int_0^\infty \theta(t, \alpha) g(t) dt = \lim_{t \to \infty} g(t),$$

where g(t) is any bounded measurable function defined for $t \ge 0$ for which the right side of (1.4) exists. The discussion of the latter problem yields results similar to those obtained by Agnew [1].

Received March 30, 1948; in revised form, July 1, 1949. The results of the present paper were obtained by the author at the University of Cincinnati under the guidance of Professor C. N. Moore.