THE NUMBER OF POSITIVE INTEGERS $\leq x$ AND FREE OF PRIME DIVISORS $>x^{c}$, AND A PROBLEM OF S. S. PILLAI

By V. Ramaswami

1. Notation and conventions. For economy of presentation and convenience in printing, the following notation and conventions are introduced at the outset.

Notation. The following symbols are used throughout the paper.
C is Euler's constant.
c, y, t are real numbers; r, n positive integers; x any real number ≥ 2, and satisfying the conditions of its context.
$[x]=$ integral part of $x ; F(x)=x-[x]$.
$l=\log x ; L=x l^{-1} ; L_{2}=x l^{-2}$.
$e\{m\}=e(m)=\exp (m)$ for every m.
$\pi(x)=$ number of primes $\leq x ; p$ a prime; $P(x)=\sum_{p \leq x} p^{-1}$.
$f(x, c)$ denotes the number of positive integers $\leq x$ and free of prime divisors $>x^{c}$.
$S(x, p)$ is the set of integers $\leq x$ each divisible by p and free of prime divisors $>p$.
$T(x, p)$ is the set of integers $\leq x$ each free of prime divisors $>p$.
$N(K)$ denotes the number of members of the set K, where K denotes any finite set of integers.

Conventions. $a_{1}, a_{2}, \cdots ; b_{1}, b_{2}, \cdots ; A_{1}, A_{2}, \cdots$ are positive constants each of which is chosen once and for all to suit the entire context, according as it occurs in a question or in an assertion (viz., in the statement of a theorem or in the course of any proof).
2. Introduction. In a paper communicated elsewhere, I have proved by means of elementary theorems (viz., without using the prime number theorem or any equivalent) a result which may be stated as follows.

Theorem A. A bounded function $\phi(y)$, positive-valued for $y>0$, and a positivevalued function $g(y)$ exist such that

$$
\begin{equation*}
f(x, y)=x \phi(y)+h(x, y) L ; \quad|h(x, y)|<g(y) . \tag{1}
\end{equation*}
$$

It is natural to inquire whether (1) is true with a_{1} in place of $g(y)$. The affirmative answer to this question follows from the theorem of this paper which follows.

Received by Annals of Mathematics, January 19, 1948; transferred to this Journal, May 28, 1948.

