THE NUMBER OF POSITIVE INTEGERS $\leq x$ AND FREE OF PRIME DIVISORS $> x^c$, AND A PROBLEM OF S. S. PILLAI

By V. Ramaswami

1. **Notation and conventions.** For economy of presentation and convenience in printing, the following notation and conventions are introduced at the outset. *Notation*. The following symbols are used throughout the paper.

C is Euler's constant.

c, y, t are real numbers; r, n positive integers; x any real number ≥ 2 , and satisfying the conditions of its context.

[x] = integral part of x; F(x) = x - [x].

 $l = \log x; L = xl^{-1}; L_2 = xl^{-2}.$

 $e\{m\} = e(m) = \exp(m)$ for every m.

 $\pi(x)$ = number of primes $\leq x$; p a prime; $P(x) = \sum_{p \leq x} p^{-1}$.

f(x, c) denotes the number of positive integers $\leq x$ and free of prime divisors $> x^c$.

S(x, p) is the set of integers $\leq x$ each divisible by p and free of prime divisors > p.

T(x, p) is the set of integers $\leq x$ each free of prime divisors > p.

N(K) denotes the number of members of the set K, where K denotes any finite set of integers.

Conventions. a_1 , a_2 , \cdots ; b_1 , b_2 , \cdots ; A_1 , A_2 , \cdots are positive constants each of which is chosen once and for all to suit the entire context, according as it occurs in a question or in an assertion (*viz.*, in the statement of a theorem or in the course of any proof).

2. Introduction. In a paper communicated elsewhere, I have proved by means of elementary theorems (*viz.*, without using the prime number theorem or any equivalent) a result which may be stated as follows.

THEOREM A. A bounded function $\phi(y)$, positive-valued for y > 0, and a positive-valued function g(y) exist such that

(1)
$$f(x, y) = x\phi(y) + h(x, y)L; \quad |h(x, y)| < g(y).$$

It is natural to inquire whether (1) is true with a_1 in place of g(y). The affirmative answer to this question follows from the theorem of this paper which follows.

Received by Annals of Mathematics, January 19, 1948; transferred to this Journal, May 28, 1948.