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1. Notation and conventions. For economy of presentation and convenience
in printing, the following notation and conventions are introduced at the outset.

Notation. The following symbols are used throughout the paper.
C is Euler’s constant.
c, y, are real numbers; r, n positive integers; x any real number >_2, and

satisfying the conditions of its context.
[x] integral part of x; F(x) x [x].

log x; L xl-1; L2 xl-.
e{m} e(m) exp (m) for every m.
v(x) number of primes _<x; p a prime; P(x) ’p. p-1.
f(x, c) denotes the number of positive integers _<x and free of prime divisors

S(x, p) is the set of integers _< x each divisible by p and free of prime divisors
>p.

T(x, p) is the set of integers _<x each free of prime divisors >p.
N(K) denotes the number of members of the set K, where K denotes any

finite set of integers.
Conventions. al a2, bl b2, A A2, are positive constants

each of which is chosen once and for all to suit the entire context, according as
it occurs in a question or in an assertion (viz., in the statement of a theorem or
in the course of any proof).

2. Introduction. In a paper communicated elsewhere, I have proved by
means of elementary theorems (viz., without using the prime number theorem
or any equivalent) a result which may be stated as follows.

THEOREM A. A bounded function $(y), positive-valued for y > O, and a positive-
valued function g(y) exist such that

(1) f(x, y) x(y) + h(x, y)L; h(x, y) < g(y).

It is natural to inquire whether (1) is true with a in place of g(y). The
affirmative answer to this question follows from the theorem of this paper which
follows.
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