q-BERNOULLI NUMBERS AND POLYNOMIALS

By L. CARLITZ

1. Introduction. We define a set of "numbers" η_m by means of the symbolic formula

$$(q\eta + 1)^m = \eta_m \qquad (m > 1), \qquad \eta_0 = 1, \qquad \eta_1 = 0;$$

and a set of polynomials $\eta_m(x) = \eta_m(x, q)$ in q^x such that

$$\eta_m(x+1) - \eta_m(x) = mq^x[x]^{m-1}, \qquad \eta_m(0) = \eta_m$$

where $[x] = (q^x - 1)/(q - 1)$. We next define a set of numbers β_m by means of $\beta_m = \eta_m + (q - 1)\eta_{m+1}$ and a set of polynomials $\beta_m(x) = \beta_m(x, q)$ such that

$$q^{x}\beta_{m}(x) = \eta_{m}(x) + (q-1)\eta_{m+1}(x), \qquad \beta_{m}(0) = \beta_{m}.$$

Some properties of the η 's and β 's are discussed in §§4, 5. For q = 1, β_m reduces to the Bernoulli number B_m ; η_m however does not remain finite.

By means of the numbers $a_{m,s}$ defined in §3 (which generalize the Stirling numbers of the second kind) we arrive at certain explicit expressions for β_m . And finally using these expressions we derive the main result of the paper—a partial generalization of the Staudt-Clausen theorem. We have

$$\beta_m = \sum_{k=2}^{m+1} N_{m,k}(q) / F_k(q),$$

where $F_k(q)$ denotes the cyclotomic polynomial and $N_{m,k}(q)$ is a polynomial in q which satisfies

$$(q-1)^{m-1}N_{m,k}(q) \equiv qF'_k(q) \sum_{1 \leq sk \leq m+1} (-1)^{m+1+sk} \binom{m}{sk-1} \pmod{F_k(q)}.$$

For additional properties of β_m see §7.

In conclusion (§8) we define numbers ϵ_m such that $\epsilon_0 = 1$,

$$q(q\epsilon+1)^m+\epsilon^m=0 \qquad (m>0),$$

and polynomials $\epsilon_m(x) = \epsilon_m(x, q)$ such that

$$q\epsilon_m(x+1) + \epsilon_m(x) = [2] [x]^m, \qquad \epsilon_m(0) = \epsilon_m.$$

The product

$$2^{-m}(q+1)^{m}(q^{4}+1)(q^{6}+1)\cdots(q^{2m+2}+1)\epsilon_{m}(\frac{1}{2},q^{2})$$

may be considered a q-generalization of the Euler numbers.

Received September 11, 1948.