q-BERNOULLI NUMBERS AND POLYNOMIALS

By L. Carlitz

1. Introduction. We define a set of "numbers" η_{m} by means of the symbolic formula

$$
(q \eta+1)^{m}=\eta_{m} \quad(m>1), \quad \eta_{0}=1, \quad \eta_{1}=0 ;
$$

and a set of polynomials $\eta_{m}(x)=\eta_{m}(x, q)$ in q^{x} such that

$$
\eta_{m}(x+1)-\eta_{m}(x)=m q^{x}[x]^{m-1}, \quad \eta_{m}(0)=\eta_{m}
$$

where $[x]=\left(q^{x}-1\right) /(q-1)$. We next define a set of numbers β_{m} by means of $\beta_{m}=\eta_{m}+(q-1) \eta_{m+1}$ and a set of polynomials $\beta_{m}(x)=\beta_{m}(x, q)$ such that

$$
q^{x} \beta_{m}(x)=\eta_{m}(x)+(q-1) \eta_{m+1}(x), \quad \beta_{m}(0)=\beta_{m} .
$$

Some properties of the η 's and β 's are discussed in $\S \S 4,5$. For $q=1, \beta_{m}$ reduces to the Bernoulli number $B_{m} ; \eta_{m}$ however does not remain finite.

By means of the numbers $a_{m, 8}$ defined in §3 (which generalize the Stirling numbers of the second kind) we arrive at certain explicit expressions for β_{m}. And finally using these expressions we derive the main result of the paper-a partial generalization of the Staudt-Clausen theorem. We have

$$
\beta_{m}=\sum_{k=2}^{m+1} N_{m, k}(q) / F_{k}(q)
$$

where $F_{k}(q)$ denotes the cyclotomic polynomial and $N_{m, k}(q)$ is a polynomial in q which satisfies

$$
(q-1)^{m-1} N_{m, k}(q) \equiv q F_{k}^{\prime}(q) \sum_{1 \leq s k \leq m+1}(-1)^{m+1+s k}\binom{m}{s k-1} \quad\left(\bmod F_{k}(q)\right)
$$

For additional properties of β_{m} see $\S 7$.
In conclusion (§8) we define numbers ϵ_{m} such that $\epsilon_{0}=1$,

$$
q(q \epsilon+1)^{m}+\epsilon^{m}=0 \quad(m>0)
$$

and polynomials $\epsilon_{m}(x)=\epsilon_{m}(x, q)$ such that

$$
q \epsilon_{m}(x+1)+\epsilon_{m}(x)=[2][x]^{m}, \quad \epsilon_{m}(0)=\epsilon_{m} .
$$

The product

$$
2^{-m}(q+1)^{m}\left(q^{4}+1\right)\left(q^{6}+1\right) \cdots\left(q^{2 m+2}+1\right) \epsilon_{m}\left(\frac{1}{2}, q^{2}\right)
$$

may be considered a q-generalization of the Euler numbers.
Received September 11, 1948.

