INEQUALITIES OF THE MARKOFF AND BERNSTEIN TYPE FOR INTEGRAL NORMS

By Donald W. Western

Introduction. In a paper published in 1889 A. Markoff [7] proved the following theorem, the first of its type to appear in the literature: If f(x) is a polynomial of degree n and $|f(x)| \leq 1$ in the interval $-1 \leq x \leq 1$ then in the same interval $|f'(x)| \leq n^2$. An improvement on this result was obtained in 1912 by S. Bernstein [1] in connection with research on approximations of functions by polynomials. Under the same conditions as above he showed that $|f'(x)| \leq n(1-x^2)^{-\frac{1}{2}}$ where -1 < x < 1. Therefore we speak of inequalities which give a bound for the ratio of the norm of the derivative of a polynomial to the norm of the polynomial as inequalities of the Markoff and Bernstein type.

In 1914 M. Riesz [10] incorporated in some related work an inequality of this type. He proved that if f(z) is a polynomial of degree *n* which on the circle |z| = 1 satisfies $|f(z)| \leq 1$, then for *z* on this circle $|f'(z)| \leq n$. Another extension was given in 1925 by G. Szegö [16] in the following form: If *C* is a simple closed Jordan curve composed of a finite number of analytic arcs meeting in exterior angles $t_i \pi$, $t_i \neq 0$, and if f(z) is a polynomial of degree *n* then $|f'(z_0)| < cn^t \max_{x \in C} |f(z)|$, where z_0 is on *C*, *t* is the maximum t_i , and *c* is independent of *n* and f(z). This result was extended to fractional derivatives by Montel [8] and by Sewell [14].

A notable addition to the list of inequalities of this type was made by Zygmund [20] in 1932 with a result for integral norms instead of absolute values. If $F(\theta)$ is a trigonometric polynomial of degree n and period 2π and if $p \ge 1$, then

$$\left\{(1/2\pi)\int_{-\pi}^{\pi} |F'(\theta)|^p d\theta\right\}^{1/p} \leq n \left\{(1/2\pi)\int_{-\pi}^{\pi} |F(\theta)|^p d\theta\right\}^{1/p}.$$

This type of inequality was extended to rational polynomials on a straight line segment in 1937 by Hille, Szegö, and Tamarkin [5] in the form

$$\left\{\int_{-1}^{1} |f'(x)|^{p} dx\right\}^{1/p} \leq An^{2} \left\{\int_{-1}^{1} |f(x)|^{p} dx\right\}^{1/p},$$

where $p \ge 1$ and A is independent of n and f(x).

These are some of the principal steps in the development of the type of inequality under consideration. Their applications in the field of approximations are extensive. A bibliography on the salient points of the theory is to be found in an address by A. C. Schaeffer in 1940 [11].

Received October 16, 1947. This paper is part of a thesis submitted in May 1946 in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Brown University.