THE COMPLETE MONOTONICITY OF CERTAIN FUNCTIONS DERIVED FROM COMPLETELY MONOTONE FUNCTIONS

By J. Barkley Rosser

1. Introduction. We prove the following theorems for any function $F(x)$ which is completely monotonic and has derivatives for $0 \leq x \leq \infty$. That is, we assume throughout that
(1)

$$
(-1)^{k} F^{(k)}(x) \geq 0
$$

$$
(0 \leq x \leq \infty)
$$

Theorem A. If we define
(2)

$$
F_{m, n}(x)=\left|\begin{array}{cccc}
F^{(m)}(0) & F^{(m+1)}(0) & \cdots & F^{(m+n)}(0) \\
F^{(m+1)}(0) & F^{(m+2)}(0) & \cdots & F^{(m+n+1)}(0) \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
F^{(m+n-1)}(0) & F^{(m+n)}(0) & \cdots & F^{(m+2 n-1)}(0) \\
F^{(m)}(x) & F^{(m+1)}(x) & \cdots & F^{(m+n)}(x)
\end{array}\right|,
$$

then

$$
\begin{equation*}
\frac{(-1)^{m}}{x^{n}} F_{m, n}(x) \tag{3}
\end{equation*}
$$

is completely monotonic for $0 \leq x \leq \infty$.
Theorem B. If we choose constants λ_{i} and c_{i} with the $c_{i} \geq 0$ so that
(4)

$$
F(x)-\sum_{i=1}^{n} \lambda_{i} e^{-c i x}
$$

and its first $2 n-1$ derivatives all vanish at the origin, then

$$
\begin{equation*}
\frac{1}{x^{2 n}}\left\{F(x)-\sum_{i=1}^{n} \lambda_{i} e^{-c i x}\right\} \tag{5}
\end{equation*}
$$

is completely monotonic for $0 \leq x$, and $\lambda_{i} \geq 0$ for $1 \leq i \leq n$.
Theorem C. If we choose constants λ_{i} and c_{i} with the $c_{i} \geq 0$ so that

$$
\begin{equation*}
F(x)-\lambda_{0}-\sum_{i=1}^{n} \lambda_{i} e^{-c i x} \tag{6}
\end{equation*}
$$

Received November 6, 1947.

