THE COMPLETE MONOTONICITY OF CERTAIN FUNCTIONS DERIVED FROM COMPLETELY MONOTONE FUNCTIONS

By J. BARKLEY ROSSER

1. Introduction. We prove the following theorems for any function F(x) which is completely monotonic and has derivatives for $0 \le x \le \infty$. That is, we assume throughout that

(1)
$$(-1)^{k} F^{(k)}(x) \ge 0$$
 $(0 \le x \le \infty)$

THEOREM A. If we define

(2)
$$F_{m,n}(x) = \begin{vmatrix} F^{(m)}(0) & F^{(m+1)}(0) & \cdots & F^{(m+n)}(0) \\ F^{(m+1)}(0) & F^{(m+2)}(0) & \cdots & F^{(m+n+1)}(0) \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ F^{(m+n-1)}(0) & F^{(m+n)}(0) & \cdots & F^{(m+2n-1)}(0) \\ F^{(m)}(x) & F^{(m+1)}(x) & \cdots & F^{(m+n)}(x) \end{vmatrix}$$

then

(3)
$$\frac{(-1)^m}{x^n} F_{m,n}(x)$$

is completely monotonic for $0 \leq x \leq \infty$.

THEOREM B. If we choose constants λ_i and c_i with the $c_i \geq 0$ so that

(4)
$$F(x) - \sum_{i=1}^{n} \lambda_i e^{-c_i x}$$

and its first 2n - 1 derivatives all vanish at the origin, then

(5)
$$\frac{1}{x^{2n}}\left\{F(x) - \sum_{i=1}^{n} \lambda_i e^{-c_i x}\right\}$$

is completely monotonic for $0 \leq x$, and $\lambda_i \geq 0$ for $1 \leq i \leq n$.

THEOREM C. If we choose constants λ_i and c_i with the $c_i \geq 0$ so that

(6)
$$F(x) - \lambda_0 - \sum_{i=1}^n \lambda_i e^{-c_i}$$

Received November 6, 1947.